A high performance gate engineered charge plasma based tunnel field effect transistor

被引:0
作者
Faisal Bashir
Sajad A. Loan
M. Rafat
Abdul Rehman M. Alamoud
Shuja A. Abbasi
机构
[1] Jamia Millia Islamia,Department of Electronics and Communication Engineering
[2] Jamia Millia Islamia,Department of Applied Sciences
[3] King Saud University,Department of Electrical Engineering
来源
Journal of Computational Electronics | 2015年 / 14卷
关键词
Band-to-band tunneling (BTBT); Charge plasma; Dopingless; Gate engineering; TFET; Subthreshold slope ; Switching performance;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a new gate engineered dopingless tunnel field effect transistor (GEDL-TFET). GEDL-TFET has double gate and uses metals of different work functions to realize source and drain regions in undoped silicon; a charge plasma concept. The novelty of the device is the use of dual material top gate and thus two gates appear at the top, main gate 1 and a tunneling gate (TG). The use of TG has enhanced the performance of the device significantly and it acts as a performance booster. The simulation study has shown that the ION\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {I}_{\mathrm{ON}}$$\end{document} and ION/IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {I}_{\mathrm{ON}}/\hbox {I}_{\mathrm{OFF}}$$\end{document} ratio in the proposed GEDL-TFET device have increased by ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}53 times and ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}68 times in comparison to a double gate doped TFET (D-TFET) and a double gate dopingless TFET (DL-TFET) devices respectively. Further, a significant improvement in average subthreshold slope of ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}57% has been achieved in the proposed GEDL-TFET device in comparison to the other two devices. Besides, the cutoff frequency (fT)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(f_{\mathrm{T}})$$\end{document} of GEDL-TFET (90.77 GHZ) has increased by ∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}12 times in comparison to D-FET (∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}7.77 GHZ) and DL-TFET (∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim $$\end{document}7.77 GHZ) devices respectively. The transient analyses have shown that a reduction of 47 and 44.11 % in switching ON-delay and 21.1 and 16.23 % in switching OFF delay is obtained in the GEDL-TFET device based inverting amplifier in comparison to DL-TFET and D-TFET based inverters amplifiers respectively.
引用
收藏
页码:477 / 485
页数:8
相关论文
共 89 条
[1]  
Loan SA(2010)A novel partial ground plane based MOSFET on selective buried oxide: 2D simulation study IEEE Trans. Electron Devices 57 671-680
[2]  
Qureshi S(2008)Woo, Jason C.S.: The tunnel source (PNPN) n-MOSFET: a novel high performance transistor IEEE Trans. Electron Devices 4 1013-1019
[3]  
Iyer SSK(2011)Tunnel field effect transistors as energy efficient electronic switches Nature 479 329-337
[4]  
Nagavarapu V(2000)FinFET—a self-aligned double-gate MOSFET scalable to 20 nm IEEE Trans. Electron Devices 47 2320-2325
[5]  
Jhaveri R(1991)Enhancement-mode quantum-well Ge IEEE Electron Device Lett. 12 154-156
[6]  
Ionescu AM(2008)SiGe1- Nano Lett. 8 405-410
[7]  
Riel H(1978) PMOS Surf. Sci. 73 190-196
[8]  
Hisamoto D(1987)Use of negative capacitance to provide voltage amplification for low power nanoscale devices IEEE Electron Device Lett. 8 347-349
[9]  
Lee W-C(1992)Subband spectroscopy by surface channel tunneling Jpn. J. Appl. Phys. 31 L455-L457
[10]  
Kedzierski J(2010)A new three-terminal tunnel device Proc. IEEE 98 2095-2110