Generalized sub-Gaussian fractional Brownian motion queueing model

被引:0
作者
R. Yamnenko
Yu. Kozachenko
D. Bushmitch
机构
[1] Taras Shevchenko National University of Kyiv,Department of Probability Theory, Statistics and Actuarial Mathematics
[2] Mitre Corporation,undefined
来源
Queueing Systems | 2014年 / 77卷
关键词
Fractional Brownian motion; Buffer overflow probability; Sub-Gaussian processes; 60K25; 60G20;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known that often the one-dimensional distribution of a queue content is not Gaussian but its tails behave like a Gaussian. We propose to consider a general class of processes, namely the class of φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-sub-Gaussian random processes, which is more general than the Gaussian one and includes non-Gaussian processes. The class of sub-Gaussian random processes contains Gaussian processes also and therefore is of special interest. In this paper we provide an estimate for the queue content distribution of a fluid queue fed by N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} independent strictly φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document}-sub-Gaussian generalized fractional Brownian motion input processes. We obtain an upper estimate of buffer overflow probability in a finite buffer system defined on any finite time interval [a,b]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[a,b]$$\end{document} or infinite interval [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty )$$\end{document}. The derived estimate captures more accurately the performance of the queueing system for a wider-range of input processes.
引用
收藏
页码:75 / 96
页数:21
相关论文
共 38 条
[1]  
Addie R(2002)Most probable paths and performance formulae for buffers with Gaussian input traffic Eur. Trans. Telecommun. 13 183-196
[2]  
Mannersalo P(1995)Long-range dependence in variable-bit-rate video traffic IEEE Trans. Commun. 43 1566-1579
[3]  
Norros I(2009)On average losses in the ruin problem with fractional Brownian motion as input Extremes 12 77-91
[4]  
Beran J(2000)Use of supremum distribution of Gaussian processes in queueing analysis with long-range dependence and self-similarity Commun. Stat. Stoch. Models 16 209-231
[5]  
Sherman R(1995)Large deviations and overflow probabilities for the general single-server queue, with Applications Math. Proc. Camb. Philos. Soc. 118 363-374
[6]  
Taqqu MS(2001)MPEG-4 and H.263 video traces for network performance evaluation IEEE Netw. 15 40-54
[7]  
Willinger W(2004)Variable heavy tails in internet traffic Perform. Eval. 58 261-261
[8]  
Boulongne P(2002)Weakly self-similar stationary increment processes from the space Theory Probab. Math. Stat. 65 77-88
[9]  
Pierre-Loti-Viaud D(2005)Upper estimate of overrunning by Random Oper. Stoch. Equ. 13 101-118
[10]  
Piterbarg V(1994) random process the level specified by continuous function IEEE ACM Trans. Netw. 2 1-15