Nonparametric particle filtering approaches for identification and inference in nonlinear state-space dynamic systems

被引:0
|
作者
Jean-Pierre Gauchi
Jean-Pierre Vila
机构
[1] INRA Domaine de Vilvert,Unité MIA (UR341)
[2] SupAgro-INRA,UMR MISTEA
来源
Statistics and Computing | 2013年 / 23卷
关键词
Nonlinear filtering; Particle filtering; Nonparametric filtering; State-space model; Inference tests; Bayes factor; CUSUM test; Sensitivity indices;
D O I
暂无
中图分类号
学科分类号
摘要
Most system identification approaches and statistical inference methods rely on the availability of the analytic knowledge of the probability distribution function of the system output variables. In the case of dynamic systems modelled by hidden Markov chains or stochastic nonlinear state-space models, these distributions as well as that of the state variables themselves, can be unknown or untractable. In that situation, the usual particle Monte Carlo filters for system identification or likelihood-based inference and model selection methods have to rely, whenever possible, on some hazardous approximations and are often at risk. This review shows how a recent nonparametric particle filtering approach can be efficiently used in that context, not only for consistent filtering of these systems but also to restore these statistical inference methods, allowing, for example, consistent particle estimation of Bayes factors or the generalisation of model parameter change detection sequential tests.
引用
收藏
页码:523 / 533
页数:10
相关论文
共 50 条
  • [41] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382
  • [42] Parameter reduction in nonlinear state-space identification of hysteresis
    Esfahani, Alireza Fakhrizadeh
    Dreesen, Philippe
    Tiels, Koen
    Noel, Jean-Philippe
    Schoukens, Johan
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 104 : 884 - 895
  • [43] State-space nonlinear process modeling: Identification and universality
    Sentoni, GB
    Biegler, LT
    Guiver, JB
    Zhao, H
    AICHE JOURNAL, 1998, 44 (10) : 2229 - 2239
  • [44] Hysteresis Identification Using Nonlinear State-Space Models
    Noel, J. P.
    Esfahani, A. F.
    Kerschen, G.
    Schoukens, J.
    NONLINEAR DYNAMICS, VOL 1, 34TH IMAC, 2016, : 323 - 338
  • [45] State-Space Partitioning Schemes in Multiple Particle Filtering for Improved Accuracy
    Iloska, Marija
    Bugallo, Monica E.
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2026 - 2030
  • [46] Approximate Conditional Mean Particle Filtering for Linear/Nonlinear Dynamic State Space Models
    Yee, Derek
    Reilly, James P.
    Kirubarajan, Thia
    Punithakumar, K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (12) : 5790 - 5803
  • [47] Convolution particle filtering for parameter estimation in general state-space models
    Campillo, Fabien
    Rossi, Vivien
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 2159 - 2164
  • [48] Space-Filling Input Design for Nonlinear State-Space Identification
    Kiss, Mate
    Toth, Roland
    Schoukens, Maarten
    IFAC PAPERSONLINE, 2024, 58 (15): : 562 - 567
  • [49] Identification of Nonlinear Lateral Flow Immunoassay State-Space Models via Particle Filter Approach
    Zeng, Nianyin
    Wang, Zidong
    Li, Yurong
    Du, Min
    Liu, Xiaohui
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2012, 11 (02) : 321 - 327
  • [50] STATE-SPACE MODEL AND NOISE FILTERING DESIGN IN TRANSMULTIPLEXER SYSTEMS
    FDEZVALDIVIA, J
    CHEN, BS
    SIGNAL PROCESSING, 1995, 43 (01) : 65 - 78