Nonparametric particle filtering approaches for identification and inference in nonlinear state-space dynamic systems

被引:0
|
作者
Jean-Pierre Gauchi
Jean-Pierre Vila
机构
[1] INRA Domaine de Vilvert,Unité MIA (UR341)
[2] SupAgro-INRA,UMR MISTEA
来源
Statistics and Computing | 2013年 / 23卷
关键词
Nonlinear filtering; Particle filtering; Nonparametric filtering; State-space model; Inference tests; Bayes factor; CUSUM test; Sensitivity indices;
D O I
暂无
中图分类号
学科分类号
摘要
Most system identification approaches and statistical inference methods rely on the availability of the analytic knowledge of the probability distribution function of the system output variables. In the case of dynamic systems modelled by hidden Markov chains or stochastic nonlinear state-space models, these distributions as well as that of the state variables themselves, can be unknown or untractable. In that situation, the usual particle Monte Carlo filters for system identification or likelihood-based inference and model selection methods have to rely, whenever possible, on some hazardous approximations and are often at risk. This review shows how a recent nonparametric particle filtering approach can be efficiently used in that context, not only for consistent filtering of these systems but also to restore these statistical inference methods, allowing, for example, consistent particle estimation of Bayes factors or the generalisation of model parameter change detection sequential tests.
引用
收藏
页码:523 / 533
页数:10
相关论文
共 50 条
  • [31] CVA Identification of Nonlinear Systems with LPV State-Space Models of Affine Dependence
    Larimore, Wallace E.
    Cox, Pepijn B.
    Toth, Roland
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 831 - 837
  • [32] Sigma particle filtering for nonlinear dynamic systems
    Lee, Deok-Jin
    Alfriend, Kyle T.
    ASTRODYNAMICS 2005, VOL 123, PTS 1-3, 2006, 123 : 257 - +
  • [33] Identification of Incommensurate State-Space Fractional Systems
    Gonzalez Olvera, Marcos Angel
    Tang, Yu
    2016 IEEE 13TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING, AND CONTROL (ICNSC), 2016,
  • [34] Parameter bounding identification for state-space systems
    Spathopoulos, MP
    Grobov, ID
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 67 (05) : 745 - 765
  • [35] Identification of Incommensurate State-Space Fractional Systems
    Gonzalez-Olvera, Marcos A.
    Tang, Yu
    2016 IEEE 13TH INTERNATIONAL CONFERENCE ON NETWORKING, SENSING, AND CONTROL (ICNSC), 2016,
  • [36] Parametric identification of state-space dynamic systems: A time-domain perspective
    Nazarenko, Oleksandr M.
    Filchenko, Dmytro V.
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (07): : 1553 - 1565
  • [37] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [38] Particle MCMC algorithms and architectures for accelerating inference in state-space models
    Mingas, Grigorios
    Bottolo, Leonardo
    Bouganis, Christos-Savvas
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 83 : 413 - 433
  • [39] Nonlinear state-space Modeling of dynamic ground effect
    Yu, K
    Peters, DA
    JOURNAL OF THE AMERICAN HELICOPTER SOCIETY, 2005, 50 (03) : 259 - 268
  • [40] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147