On energy stability for the coupled nonlinear Schrödinger system

被引:0
|
作者
Li Ma
Lin Zhao
机构
[1] Tsinghua University,Department of Mathematical Sciences
来源
Zeitschrift für angewandte Mathematik und Physik | 2009年 / 60卷
关键词
Coupled Schrödinger system; uniqueness; energy stability; 35C44;
D O I
暂无
中图分类号
学科分类号
摘要
In this short note, we prove that smooth solutions to the coupled nonlinear Schrödinger system with coercive polynomial nonlinearities are unique among distributional solutions enjoying the energy inequality. The argument also yields the stability of classical solutions in the energy norm.
引用
收藏
页码:774 / 784
页数:10
相关论文
共 50 条
  • [1] On energy stability for the coupled nonlinear Schrodinger system
    Ma, Li
    Zhao, Lin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 774 - 784
  • [2] New vector solutions for the cubic nonlinear schrödinger system
    Duan, Lipeng
    Luo, Xiao
    Zhen, Maoding
    JOURNAL D ANALYSE MATHEMATIQUE, 2024, 153 (01): : 247 - 291
  • [3] Existence and uniqueness of positive solutions to three coupled nonlinear Schrödinger equations
    Guo-bei Fang
    Zhong-xue Lü
    Acta Mathematicae Applicatae Sinica, English Series, 2015, 31 : 1021 - 1032
  • [4] Existence and Uniqueness of Positive Solutions to Three Coupled Nonlinear Schrdinger Equations
    Guo-bei FANG
    Zhong-xue L
    Acta Mathematicae Applicatae Sinica, 2015, 31 (04) : 1021 - 1032
  • [5] Studies on a system of nonlinear Schrödinger equations with potential and quadratic interaction
    Alvarez, Vicente
    Esfahani, Amin
    MATHEMATISCHE NACHRICHTEN, 2025, : 1230 - 1303
  • [6] Segregated solutions for a nonlinear Schrödinger system involving mass supercritical exponents
    Guo, Qidong
    Hua, Qiaoqiao
    NONLINEARITY, 2025, 38 (03)
  • [7] On energy stability for the coupled nonlinear wave and Schrodinger systems
    Ma, Li
    Liu, Haihong
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) : 4541 - 4550
  • [8] Positive least energy solutions for k-coupled Schrödinger system with critical exponent: the higher dimension and cooperative case
    Xin Yin
    Wenming Zou
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [9] On the solitary waves for anisotropic nonlinear Schrödinger models on the plane
    Tianxiang Gou
    Hichem Hajaiej
    Atanas G. Stefanov
    European Journal of Mathematics, 2023, 9
  • [10] Partially concentrating standing waves for weakly coupled Schrödinger systems
    Pellacci, Benedetta
    Pistoia, Angela
    Vaira, Giusi
    Verzini, Gianmaria
    MATHEMATISCHE ANNALEN, 2024, 390 (03) : 3691 - 3722