Holographic anomalous conductivities and the chiral magnetic effect

被引:0
作者
Antti Gynther
Karl Landsteiner
Francisco Pena-Benitez
Anton Rebhan
机构
[1] Technische Universität Wien,Institut für Theoretische Physik
[2] C-XVI Universidad Autónoma de Madrid,Instituto de Física Teórica CSIC
来源
Journal of High Energy Physics | / 2011卷
关键词
Gauge-gravity correspondence; Chiral Lagrangians; QCD;
D O I
暂无
中图分类号
学科分类号
摘要
We calculate anomaly induced conductivities from a holographic gauge theory model using Kubo formulas, making a clear conceptual distinction between thermodynamic state variables such as chemical potentials and external background fields. This allows us to pinpoint ambiguities in previous holographic calculations of the chiral magnetic conductivity. We also calculate the corresponding anomalous current three-point functions in special kinematic regimes. We compare the holographic results to weak coupling calculations using both dimensional regularization and cutoff regularization. In order to reproduce the weak coupling results it is necessary to allow for singular holographic gauge field configurations when a chiral chemical potential is introduced for a chiral charge defined through a gauge invariant but non-conserved chiral density. We argue that this is appropriate for actually addressing charge separation due to the chiral magnetic effect.
引用
收藏
相关论文
共 61 条
[21]  
Wang F(2005)More on a holographic dual of QCD Prog. Theor. Phys. 114 1083-undefined
[22]  
Asakawa M(2011)On the Chiral Magnetic Effect in Soft-Wall AdS/QCD Phys. Rev. D 83 014023-undefined
[23]  
Majumder A(2007)D3/D7 holographic Gauge theory and Chemical potential Phys. Rev. D 76 124006-undefined
[24]  
Müller B(1969)Axial vector vertex in spinor electrodynamics Phys. Rev. 177 2426-undefined
[25]  
Buividovich PV(1969)A PCAC puzzle: Nuovo Cim. A 60 47-undefined
[26]  
Chernodub MN(2002) → JHEP 09 042-undefined
[27]  
Luschevskaya EV(2003) in the JHEP 03 046-undefined
[28]  
Polikarpov MI(2010)-model JHEP 02 021-undefined
[29]  
Buividovich PV(1987)Minkowski-space correlators in AdS/CFT correspondence: Recipe and applications Phys. Rept. 145 141-undefined
[30]  
Lifschytz G(undefined)Schwinger-Keldysh propagators from AdS/CFT correspondence undefined undefined undefined-undefined