H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {H}}_2$$\end{document} and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {H}}_\infty $$\end{document} State-Feedback Control for Discrete-Time Markov Jump Lur’e Systems

被引:0
作者
Lucas P. M. da Silva
Gabrielle R. Oliveira
Alim P. C. Gonçalves
机构
[1] University of Campinas,School of Electrical and Computer Engineering
关键词
Markov jump systems; Circle criterion; and; Linear matrix inequalities;
D O I
10.1007/s40313-022-00900-7
中图分类号
学科分类号
摘要
We propose LMI conditions for H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {H}}_2$$\end{document} and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {H}}_\infty $$\end{document} analysis and state-feedback control of discrete-time Markov jump Lur’e systems. We also consider two possible approaches, either mode-dependent or mode-independent state-feedback control. We assume that the Markov mode θ(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta (k)$$\end{document} is available to the controller for the first case, and for the second one, the random variable is not available to the controller. A numerical example illustrates the obtained results.
引用
收藏
页码:1125 / 1135
页数:10
相关论文
共 23 条
[1]  
Costa OLV(2015)A Detector-Based Approach for the IEEE Transactions on Automatic Control 60 1219-1234
[2]  
Fragoso MD(2017) Control of Markov Jump Linear Systems With Partial Information International Journal of Robust and Nonlinear Control 28 1261-1280
[3]  
Todorov MG(2002)Mixed Automatica 38 343-349
[4]  
de Oliveira AM(2008) control of hidden Markov jump systems International Journal of Control 81 1221-1231
[5]  
Costa OLV(2012)The Journal of the Franklin Institute 349 2171-2181
[6]  
do Val J. B. R(2014)control for jump linear systems: cluster observations of the Markov state Automatica 50 2397-2404
[7]  
Geromel J. C(1991) filtering of discrete-time Markov jump linear systems through linear matrix inequalities Control-Theory and Advanced Technology 7 247-270
[8]  
Gonçalves A. P. C(2003) robust and networked control of discrete-time MJLS through LMIs IEEE Transactions on Automatic Control 48 1651-1654
[9]  
Fioravanti AR(1999)Stochastic stabilization and induced Optimization Methods and Software 11 625-653
[10]  
Goncalves APC(undefined)gain for discrete-time Markov jump Lur’e systems with control saturation undefined undefined undefined-undefined