Centers and Isochronous Centers of Liénard Systems

被引:0
作者
V. V. Amel’kin
A. E. Rudenok
机构
[1] Belarusian State University,
来源
Differential Equations | 2019年 / 55卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
For holomorphic Liénard equations, necessary and sufficient conditions for the existence of a center and an isochronous center are obtained without calculating the focus quantities and the isochronicity constants.
引用
收藏
页码:283 / 293
页数:10
相关论文
共 23 条
  • [11] Kukles IS(2007)( Differ. Equations 43 1464-1467
  • [12] Piskunov NS(1999)) Qual. Theory Dyn. Syst. 1 1-70
  • [13] Amel’kin VV(1975) to have a center Differ. Uravn. 11 811-819
  • [14] Chavarriga J(2000)Conditions for the equation Qual. Theory Dyn. Syst. 1 133-156
  • [15] Sabatini M(1999) to have a center J. Differential Equations 152 467-487
  • [16] Rudenok AE(2004)Trivial centers of a cubic system of Liénard type J. Differential Equations 200 1-17
  • [17] Algaba A(2006)Solution of the center-focus problem for the Liénard system with polynomial coefficients Differ. Equations 42 615-618
  • [18] Freire E(undefined)On one conjecture in the theory of isochronous Liénard systems undefined undefined undefined-undefined
  • [19] Gamero E(undefined)Generalized symmetry of the Liénard system undefined undefined undefined-undefined
  • [20] Sabatini M(undefined)On isochronicity of oscillations for conservative and nonconservative systems undefined undefined undefined-undefined