The Nielsen realization problem for high degree del Pezzo surfaces

被引:1
作者
Lee, Seraphina Eun Bi [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60611 USA
关键词
4-manifolds; Mapping class groups; Nielsen realization problem; del Pezzo surfaces; Rational surfaces;
D O I
10.1007/s10711-024-00912-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let M be a smooth 4-manifold underlying some del Pezzo surface of degree d >= 6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 6$$\end{document}. We consider the smooth Nielsen realization problem for M: which finite subgroups of Mod(M)=pi 0(Homeo+(M))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Mod}\,}}(M) = \pi _0({{\,\textrm{Homeo}\,}}<^>+(M))$$\end{document} have lifts to Diff+(M)<= Homeo+(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Diff}\,}}<^>+(M) \le {{\,\textrm{Homeo}\,}}<^>+(M)$$\end{document} under the quotient map pi:Homeo+(M)-> Mod(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi : {{\,\textrm{Homeo}\,}}<^>+(M) \rightarrow {{\,\textrm{Mod}\,}}(M)$$\end{document}? We give a complete classification of such finite subgroups of Mod(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Mod}\,}}(M)$$\end{document} for d >= 7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 7$$\end{document} and a partial answer for d=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d = 6$$\end{document}. For the cases d >= 8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d \ge 8$$\end{document}, the quotient map pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} admits a section with image contained in Diff+(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Diff}\,}}<^>+(M)$$\end{document}. For the case d=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d = 7$$\end{document}, we show that all finite order elements of Mod(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Mod}\,}}(M)$$\end{document} have lifts to Diff+(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Diff}\,}}<^>+(M)$$\end{document}, but there are finite subgroups of Mod(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Mod}\,}}(M)$$\end{document} that do not lift to Diff+(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Diff}\,}}<^>+(M)$$\end{document}. We prove that the condition of whether a finite subgroup G <= Mod(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \le {{\,\textrm{Mod}\,}}(M)$$\end{document} lifts to Diff+(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{Diff}\,}}<^>+(M)$$\end{document} is equivalent to the existence of a certain equivariant connected sum realizing G. For the case d=6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d = 6$$\end{document}, we show this equivalence for all maximal finite subgroups G <= Mod(M)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G \le {{\,\textrm{Mod}\,}}(M)$$\end{document}.
引用
收藏
页数:27
相关论文
共 27 条
  • [1] Baraglia David, 2019, Proc. Am. Math. Soc.
  • [2] Bredon Glen E., 1973, Introduction to compact transformation groups
  • [3] Chen Weimin, 2021, J. Differential Geom., V119, P260
  • [4] ON THE HOMOTOPY-THEORY OF SIMPLY CONNECTED 4 MANIFOLDS
    COCHRAN, TD
    HABEGGER, N
    [J]. TOPOLOGY, 1990, 29 (04) : 419 - 440
  • [5] Dolgachev IV, 2012, CLASSICAL ALGEBRAIC GEOMETRY: A MODERN VIEW, P1, DOI 10.1017/CBO9781139084437
  • [6] ASPECTS OF GROUP-ACTIONS ON 4-MANIFOLDS
    EDMONDS, AL
    [J]. TOPOLOGY AND ITS APPLICATIONS, 1989, 31 (02) : 109 - 124
  • [7] Farb Benson, 2021, J. Differ. Geom.
  • [8] Fenchel W., 1948, Atti Accad. Naz Lincei. Rend. Cl. Sci. Fis. Mat. Nat., V8, P326
  • [9] THE TOPOLOGY OF 4-DIMENSIONAL MANIFOLDS
    FREEDMAN, MH
    [J]. JOURNAL OF DIFFERENTIAL GEOMETRY, 1982, 17 (03) : 357 - 453
  • [10] Fricke R., 1891, Math. Ann, V38, P50, DOI [10.1007/BF01212693, DOI 10.1007/BF01212693]