An improved exact algorithm for undirected feedback vertex set

被引:0
作者
Mingyu Xiao
Hiroshi Nagamochi
机构
[1] University of Electronic Science and Technology of China,School of Computer Science and Engineering
[2] Kyoto University,Department of Applied Mathematics and Physics, Graduate School of Informatics
来源
Journal of Combinatorial Optimization | 2015年 / 30卷
关键词
Exact exponential algorithms; Feedback vertex set; Measure and conquer; Branch and bound;
D O I
暂无
中图分类号
学科分类号
摘要
A feedback vertex set in an undirected graph is a subset of vertices removal of which leaves a graph with no cycles. Razgon (in: Proceedings of the 10th Scandinavian workshop on algorithm theory (SWAT 2006), pp. 160–171, 2006) gave a 1.8899nnO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.8899^n n^{O(1)}$$\end{document}-time algorithm for finding a minimum feedback vertex set in an n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document}-vertex undirected graph, which is the first exact algorithm for the problem that breaks the trivial barrier of 2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^n$$\end{document}. Later, Fomin et al. (Algorithmica 52:293–307, 2008) improved the result to 1.7548nnO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.7548^n n^{O(1)}$$\end{document}. In this paper, we further improve the result to 1.7266nnO(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.7266^n n^{O(1)}$$\end{document}. Our algorithm is analyzed by the measure-and-conquer method. We get the improvement by designing new reductions based on biconnectivity of instances and introducing a new measure scheme on the structure of reduced graphs.
引用
收藏
页码:214 / 241
页数:27
相关论文
共 33 条
  • [1] Bafna V(1999)A 2-approximation algorithm for the undirected feedback vertex set problem SIAM J Discret Math 12 289-297
  • [2] Berman P(2012)Fast algorithms for max independent set Algorithmica 62 382-415
  • [3] Fujito T(2008)Improved algorithms for feedback vertex set problems J. Comput. Syst. Sci. 74 1188-1198
  • [4] Bourgeois N(2008)A fixed-parameter algorithm for the directed feedback vertex set problem J. ACM 55 1-19
  • [5] Escoffier B(1998)Approximating minimum feedback sets and multicuts in directed graphs Algorithmica 20 151-174
  • [6] Paschos VT(2008)On the minimum feedback vertex set problem: exact and enumeration algorithms Algorithmica 52 293-307
  • [7] van Rooij JMM(2009)A measure & conquer approach for the analysis of exact algorithms J. ACM 56 1-32
  • [8] Chen J(2006)Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization J. Comput. Syst. Sci. 72 1386-1396
  • [9] Fomin F(undefined)undefined undefined undefined undefined-undefined
  • [10] Liu Y(undefined)undefined undefined undefined undefined-undefined