Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs

被引:0
|
作者
Ming Chen
Yusheng Li
Chaoping Pei
机构
[1] Tongji University,School of Mathematical Sciences
[2] Jiaxing University,College of Mathematics Physics and Information Engineering
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Gallai–Ramsey number; Rainbow triangle; Cycle; Bipartite graph;
D O I
暂无
中图分类号
学科分类号
摘要
For graphs G and H and integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, the Gallai–Ramsey number grk(G:H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(G:H)$$\end{document} is defined to be the minimum integer N such that if KN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_N$$\end{document} is edge-colored with k colors, then there is either a rainbow G or a monochromatic H. It is known that grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} is exponential in k. In this note, we improve the upper bound for grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} obtained by Hall et al., and give bounds for grk(K3:Km,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:K_{m,n})$$\end{document}.
引用
收藏
页码:1185 / 1196
页数:11
相关论文
共 50 条
  • [31] Star-critical Ramsey Numbers of Wheels Versus Odd Cycles
    Liu, Yu-chen
    Chen, Yao-jun
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2022, 38 (04): : 916 - 924
  • [32] Star-critical Ramsey Numbers of Wheels Versus Odd Cycles
    Yu-chen Liu
    Yao-jun Chen
    Acta Mathematicae Applicatae Sinica, English Series, 2022, 38 : 916 - 924
  • [33] The ratio of the numbers of odd and even cycles in outerplanar graphs
    Higashitani, Akihiro
    Matsumoto, Naoki
    DISCRETE MATHEMATICS, 2023, 346 (04)
  • [34] Degree Bipartite Ramsey Numbers
    Wang, Ye
    Li, Yusheng
    Li, Yan
    TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (03): : 427 - 433
  • [35] Size bipartite Ramsey numbers
    Sun, Yuqin
    Li, Yusheng
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1060 - 1066
  • [36] Anti-Ramsey numbers for cycles in the generalized Petersen graphs
    Liu, Huiqing
    Lu, Mei
    Zhang, Shunzhe
    APPLIED MATHEMATICS AND COMPUTATION, 2022, 430
  • [37] BIPARTITE RAMSEY NUMBER PAIRS INVOLVING CYCLES
    Joubert, Ernst J.
    Hattingh, Johannes H.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2023,
  • [38] Gallai-Ramsey number of even cycles with chords
    Zhang, Fangfang
    Song, Zi-Xia
    Chen, Yaojun
    DISCRETE MATHEMATICS, 2022, 345 (03)
  • [39] DECOMPOSITIONS OF COMPLETE BIPARTITE GRAPHS AND COMPLETE GRAPHS INTO PATHS, STARS, AND CYCLES WITH FOUR EDGES EACH
    Shyu, Tay-Woei
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 451 - 468
  • [40] Some Bistar Bipartite Ramsey Numbers
    Johannes H. Hattingh
    Ernst J. Joubert
    Graphs and Combinatorics, 2014, 30 : 1175 - 1181