Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs

被引:0
|
作者
Ming Chen
Yusheng Li
Chaoping Pei
机构
[1] Tongji University,School of Mathematical Sciences
[2] Jiaxing University,College of Mathematics Physics and Information Engineering
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Gallai–Ramsey number; Rainbow triangle; Cycle; Bipartite graph;
D O I
暂无
中图分类号
学科分类号
摘要
For graphs G and H and integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, the Gallai–Ramsey number grk(G:H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(G:H)$$\end{document} is defined to be the minimum integer N such that if KN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_N$$\end{document} is edge-colored with k colors, then there is either a rainbow G or a monochromatic H. It is known that grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} is exponential in k. In this note, we improve the upper bound for grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} obtained by Hall et al., and give bounds for grk(K3:Km,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:K_{m,n})$$\end{document}.
引用
收藏
页码:1185 / 1196
页数:11
相关论文
共 50 条
  • [21] On multicolor Ramsey numbers for even cycles in graphs
    Sun Yongqi
    Yang Yuansheng
    Jiang Baoqi
    Lin Xiaohui
    Lei, Shi
    ARS COMBINATORIA, 2007, 84 : 333 - 343
  • [22] Long Paths in Bipartite Graphs and Path-Bistar Bipartite Ramsey Numbers
    Michitaka Furuya
    Shun-ichi Maezawa
    Kenta Ozeki
    Graphs and Combinatorics, 2020, 36 : 167 - 176
  • [23] Long Paths in Bipartite Graphs and Path-Bistar Bipartite Ramsey Numbers
    Furuya, Michitaka
    Maezawa, Shun-ichi
    Ozeki, Kenta
    GRAPHS AND COMBINATORICS, 2020, 36 (01) : 167 - 176
  • [24] Gallai-Ramsey numbers for fans
    Mao, Yaping
    Wang, Zhao
    Magnant, Colton
    Schiermeyer, Ingo
    DISCRETE MATHEMATICS, 2023, 346 (05)
  • [25] Gallai-Ramsey numbers for books
    Zou, Jinyu
    Mao, Yaping
    Magnant, Colton
    Wang, Zhao
    Ye, Chengfu
    DISCRETE APPLIED MATHEMATICS, 2019, 268 : 164 - 177
  • [26] Some multicolor bipartite Ramsey numbers involving cycles and a small number of colors
    Hattingh, Johannes H.
    Joubert, Ernst J.
    DISCRETE MATHEMATICS, 2018, 341 (05) : 1325 - 1330
  • [27] Ramsey numbers of large books and bipartite graphs with small bandwidth
    You, Chunlin
    Lin, Qizhong
    Chen, Xun
    DISCRETE MATHEMATICS, 2021, 344 (07)
  • [28] Multi-color Ramsey numbers of two bipartite graphs
    Wang, Ye
    Song, Yanyan
    Li, Yusheng
    Liu, Meng
    DISCRETE MATHEMATICS, 2024, 347 (10)
  • [29] Decomposition of complete bipartite graphs into paths and cycles
    Jeevadoss, S.
    Muthusamy, A.
    DISCRETE MATHEMATICS, 2014, 331 : 98 - 108
  • [30] Gallai-Ramsey numbers for multiple triangles
    Zhang, Fangfang
    Zhu, Xiutao
    Chen, Yaojun
    DISCRETE APPLIED MATHEMATICS, 2021, 298 : 103 - 109