Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs

被引:0
|
作者
Ming Chen
Yusheng Li
Chaoping Pei
机构
[1] Tongji University,School of Mathematical Sciences
[2] Jiaxing University,College of Mathematics Physics and Information Engineering
来源
Graphs and Combinatorics | 2018年 / 34卷
关键词
Gallai–Ramsey number; Rainbow triangle; Cycle; Bipartite graph;
D O I
暂无
中图分类号
学科分类号
摘要
For graphs G and H and integer k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, the Gallai–Ramsey number grk(G:H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(G:H)$$\end{document} is defined to be the minimum integer N such that if KN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_N$$\end{document} is edge-colored with k colors, then there is either a rainbow G or a monochromatic H. It is known that grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} is exponential in k. In this note, we improve the upper bound for grk(K3:C2n+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:C_{2n+1})$$\end{document} obtained by Hall et al., and give bounds for grk(K3:Km,n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$gr_k(K_3:K_{m,n})$$\end{document}.
引用
收藏
页码:1185 / 1196
页数:11
相关论文
共 50 条
  • [1] Gallai-Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs
    Chen, Ming
    Li, Yusheng
    Pei, Chaoping
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1185 - 1196
  • [2] Ramsey Numbers of Complete Bipartite Graphs
    Liu, Meng
    Du, Bangwei
    GRAPHS AND COMBINATORICS, 2025, 41 (01)
  • [3] All partitions have small parts - Gallai-Ramsey numbers of bipartite graphs
    Wu, Haibo
    Magnant, Colton
    Nowbandegani, Pouria Salehi
    Xia, Suman
    DISCRETE APPLIED MATHEMATICS, 2019, 254 : 196 - 203
  • [4] Gallai-Ramsey number of odd cycles with chords
    Zhang, Fangfang
    Song, Zi-Xia
    Chen, Yaojun
    EUROPEAN JOURNAL OF COMBINATORICS, 2023, 107
  • [5] Ramsey and Gallai-Ramsey Numbers of Cycles and Books
    Mei-qin Wei
    Ya-ping Mao
    Ingo Schiermeyer
    Zhao Wang
    Acta Mathematicae Applicatae Sinica, English Series, 2025, 41 (2): : 425 - 440
  • [6] Bipartite anti-Ramsey numbers of cycles
    Axenovich, M
    Jiang, T
    Kündgen, A
    JOURNAL OF GRAPH THEORY, 2004, 47 (01) : 9 - 28
  • [7] Improved Upper Bounds for Gallai-Ramsey Numbers of Paths and Cycles
    Hall, Martin
    Magnant, Colton
    Ozeki, Kenta
    Tsugaki, Masao
    JOURNAL OF GRAPH THEORY, 2014, 75 (01) : 59 - 74
  • [8] Multicolor Ramsey Numbers of Bipartite Graphs and Large Books
    Li, Yan
    Li, Yusheng
    Wang, Ye
    GRAPHS AND COMBINATORICS, 2023, 39 (02)
  • [9] Gallai-Ramsey numbers for graphs with chromatic number three
    Zhao, Qinghong
    Wei, Bing
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 110 - 118
  • [10] Some Generalized Bipartite Ramsey Numbers Involving Short Cycles
    Ernst J. Joubert
    Graphs and Combinatorics, 2017, 33 : 433 - 448