A weak second-order split-step method for numerical simulations of stochastic differential equations

被引:0
作者
C. Perret
W. P. Petersen
机构
[1] ETH Zürich,Seminar for Applied Mathematics
来源
BIT Numerical Mathematics | 2014年 / 54卷
关键词
Monte-Carlo; Stochastic differential equations; Stability; 34F05; 65C05; 65C30;
D O I
暂无
中图分类号
学科分类号
摘要
In an analogy from symmetric ordinary differential equation numerical integrators, we derive a three-stage, weak 2nd-order procedure for Monte-Carlo simulations of Itô stochastic differential equations. Our composite procedure splits each time step into three parts: an h/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h/2$$\end{document}-stage of trapezoidal rule, an h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-stage martingale, followed by another h/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h/2$$\end{document}-stage of trapezoidal rule. In n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n$$\end{document} time steps, an h/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h/2$$\end{document}-stage deterministic step follows another n-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-1$$\end{document} times. Each of these adjacent pairs may be combined into a single h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}-stage, effectively producing a two-stage method with partial overlap between successive time steps.
引用
收藏
页码:801 / 821
页数:20
相关论文
共 10 条
  • [1] Higham D.J.(2002)Strong convergence of Euler-type methods for nonlinear stochastic differential equations SIAM J. Numer. Anal. 40 1041-1063
  • [2] Mao X.(2006)Improved long-period generators based on linear recurrences modulo 2 ACM Trans. Math. Softw. (TOMS) 32 1-16
  • [3] Stuart A.M.(1998)A general implicit splitting for stabilizing numerical simulations of Itô stochastic differential equations SIAM J. Numer. Anal. 35 1439-1451
  • [4] Panneton F(1968)On the construction and comparison of difference schemes SIAM J. Numer. Anal. 5 506-517
  • [5] L’Ecuyer P(1986)Discrétisation d’une équation différentielle stochastique et calcul approché d’espérances de fonctionnelles de la solution RAIRO Modél. Math. Anal. Numér. 20 141-179
  • [6] Matsumoto M(1990)Construction of higher order symplectic integrators Phys. Lett. A 150 262-268
  • [7] Petersen WP(undefined)undefined undefined undefined undefined-undefined
  • [8] Strang WG(undefined)undefined undefined undefined undefined-undefined
  • [9] Talay D(undefined)undefined undefined undefined undefined-undefined
  • [10] Yoshida H(undefined)undefined undefined undefined undefined-undefined