An extreme learning machine approach for slope stability evaluation and prediction

被引:1
|
作者
Zaobao Liu
Jianfu Shao
Weiya Xu
Hongjie Chen
Yu Zhang
机构
[1] Hohai University,Geotechnical Research Institute
[2] University of Science and Technology of Lille,Laboratory of Mechanics of Lille
来源
Natural Hazards | 2014年 / 73卷
关键词
Geotechnical engineering; Slope stability analysis; Stability prediction; Circular slip failure; Artificial intelligence; Extreme learning machine;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents slope stability evaluation and prediction with the approach of a fast robust neural network named the extreme learning machine (ELM). The circular failure mechanism of a slope is formulated based on its material, geometrical and environmental parameters such as the unit weight, the cohesion, the internal friction angle, the slope inclination, slope height and the pore water ratio. The ELM is proposed to evaluate the stability of slopes subjected to potential circular failures by means of prediction of the factor of safety (FS). Substantial slope cases collected worldwide are utilized to illustrate and assess the capability and predictability of the ELM on slope stability analysis. Based on the mean absolute percentage errors and the correlation coefficients between the original and predicted FS values, comparisons are demonstrated between the ELM and the generalized regression neural network (GRNN) as well as the prediction models generated from the genetic algorithms. Moreover, sensitivity analysis of the slope parameters and the ELM model parameters is carried out based on the two utilized evaluation functions. The time expense of the ELM on slope stability analysis is also investigated. The results prove that the ELM is advantageous to the GRNN and the genetic algorithm based models in the analysis of slope stability. Hence, the ELM can be a promising technique for approaching the problems in geotechnical engineering.
引用
收藏
页码:787 / 804
页数:17
相关论文
共 50 条
  • [31] Rock slope stability analysis and charts based on hybrid online sequential extreme learning machine model
    Chao Deng
    Huanxiao Hu
    Tianle Zhang
    Jiale Chen
    Earth Science Informatics, 2020, 13 : 729 - 746
  • [32] Application of a support vector machine for prediction of slope stability
    XUE Xin Hua
    YANG Xing Guo
    CHEN Xin
    Science China(Technological Sciences), 2014, 57 (12) : 2379 - 2386
  • [33] Application of a support vector machine for prediction of slope stability
    Xue XinHua
    Yang XingGuo
    Chen Xin
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2014, 57 (12) : 2379 - 2386
  • [34] Application of a support vector machine for prediction of slope stability
    XUE Xin Hua
    YANG Xing Guo
    CHEN Xin
    Science China(Technological Sciences), 2014, (12) : 2379 - 2386
  • [35] Rock slope stability analysis and charts based on hybrid online sequential extreme learning machine model
    Deng, Chao
    Hu, Huanxiao
    Zhang, Tianle
    Chen, Jiale
    EARTH SCIENCE INFORMATICS, 2020, 13 (03) : 729 - 746
  • [36] Optimized Extreme Learning Machine for Power System Transient Stability Prediction Using Synchrophasors
    Zhang, Yanjun
    Li, Tie
    Na, Guangyu
    Li, Guoqing
    Li, Yang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [37] Wind Speed Prediction with Extreme Learning Machine
    Lazarevska, Elizabeta
    2016 IEEE 8TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS (IS), 2016, : 154 - 159
  • [38] Slope stability prediction of circular mode failure by machine learning models based on Bayesian Optimizer
    Kadkhodaei, Mohammad Hossein
    Ghasemi, Ebrahim
    Fazel, Mohammad Hossein
    JOURNAL OF MOUNTAIN SCIENCE, 2025,
  • [39] Stability prediction of a natural and man-made slope using various machine learning algorithms
    Karir, Dhruva
    Ray, Arunava
    Bharati, Ashutosh Kumar
    Chaturvedi, Utkarsh
    Rai, Rajesh
    Khandelwal, Manoj
    TRANSPORTATION GEOTECHNICS, 2022, 34
  • [40] Machine Learning Models for Slope Stability Classification of Circular Mode Failure: An Updated Database and Automated Machine Learning (AutoML) Approach
    Ma, Junwei
    Jiang, Sheng
    Liu, Zhiyang
    Ren, Zhiyuan
    Lei, Dongze
    Tan, Chunhai
    Guo, Haixiang
    SENSORS, 2022, 22 (23)