Vortex Axisymmetrization, Inviscid Damping, and Vorticity Depletion in the Linearized 2D Euler Equations

被引:0
作者
Jacob Bedrossian
Michele Coti Zelati
Vlad Vicol
机构
[1] University of Maryland,
[2] College Park,undefined
[3] Imperial College London,undefined
[4] Princeton University,undefined
[5] New York University,undefined
来源
Annals of PDE | 2019年 / 5卷
关键词
Euler equations; Inviscid damping; Vortex axisymmetrization; Vorticity depletion; Phase mixing; Scattering;
D O I
暂无
中图分类号
学科分类号
摘要
Coherent vortices are often observed to persist for long times in turbulent 2D flows even at very high Reynolds numbers and are observed in experiments and computer simulations to potentially be asymptotically stable in a weak sense for the 2D Euler equations. We consider the incompressible 2D Euler equations linearized around a radially symmetric, strictly monotone decreasing vorticity distribution. For sufficiently regular data, we prove the inviscid damping of the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-dependent radial and angular velocity fields with the optimal rates ur(t)≲⟨t⟩-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| u^r(t)\right\| \lesssim \langle t \rangle ^{-1}$$\end{document} and uθ(t)≲⟨t⟩-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| u^\theta (t)\right\| \lesssim \langle t \rangle ^{-2}$$\end{document} in the appropriate radially weighted L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces. We moreover prove that the vorticity weakly converges back to radial symmetry as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}, a phenomenon known as vortex axisymmetrization in the physics literature, and characterize the dynamics in higher Sobolev spaces. Furthermore, we prove that the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-dependent angular Fourier modes in the vorticity are ejected from the origin as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}, resulting in faster inviscid damping rates than those possible with passive scalar evolution. This non-local effect is called vorticity depletion. Our work appears to be the first to find vorticity depletion relevant for the dynamics of vortices.
引用
收藏
相关论文
共 128 条
[61]  
Rousset F(undefined)undefined undefined undefined undefined-undefined
[62]  
Gallay T(undefined)undefined undefined undefined undefined-undefined
[63]  
Wayne CE(undefined)undefined undefined undefined undefined-undefined
[64]  
Glassey R(undefined)undefined undefined undefined undefined-undefined
[65]  
Schaeffer J(undefined)undefined undefined undefined undefined-undefined
[66]  
Hall IM(undefined)undefined undefined undefined undefined-undefined
[67]  
Bassom AP(undefined)undefined undefined undefined undefined-undefined
[68]  
Gilbert AD(undefined)undefined undefined undefined undefined-undefined
[69]  
Hwang HJ(undefined)undefined undefined undefined undefined-undefined
[70]  
Velaźquez JJL(undefined)undefined undefined undefined undefined-undefined