Vortex Axisymmetrization, Inviscid Damping, and Vorticity Depletion in the Linearized 2D Euler Equations

被引:0
作者
Jacob Bedrossian
Michele Coti Zelati
Vlad Vicol
机构
[1] University of Maryland,
[2] College Park,undefined
[3] Imperial College London,undefined
[4] Princeton University,undefined
[5] New York University,undefined
来源
Annals of PDE | 2019年 / 5卷
关键词
Euler equations; Inviscid damping; Vortex axisymmetrization; Vorticity depletion; Phase mixing; Scattering;
D O I
暂无
中图分类号
学科分类号
摘要
Coherent vortices are often observed to persist for long times in turbulent 2D flows even at very high Reynolds numbers and are observed in experiments and computer simulations to potentially be asymptotically stable in a weak sense for the 2D Euler equations. We consider the incompressible 2D Euler equations linearized around a radially symmetric, strictly monotone decreasing vorticity distribution. For sufficiently regular data, we prove the inviscid damping of the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-dependent radial and angular velocity fields with the optimal rates ur(t)≲⟨t⟩-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| u^r(t)\right\| \lesssim \langle t \rangle ^{-1}$$\end{document} and uθ(t)≲⟨t⟩-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| u^\theta (t)\right\| \lesssim \langle t \rangle ^{-2}$$\end{document} in the appropriate radially weighted L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces. We moreover prove that the vorticity weakly converges back to radial symmetry as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}, a phenomenon known as vortex axisymmetrization in the physics literature, and characterize the dynamics in higher Sobolev spaces. Furthermore, we prove that the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-dependent angular Fourier modes in the vorticity are ejected from the origin as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}, resulting in faster inviscid damping rates than those possible with passive scalar evolution. This non-local effect is called vorticity depletion. Our work appears to be the first to find vorticity depletion relevant for the dynamics of vortices.
引用
收藏
相关论文
共 128 条
[21]  
Vicol V(2013)Resolvent estimates for a two-dimensional non-self-adjoint operator Commun. Pure Appl. Anal. 12 547-581
[22]  
Wang F(1961)The stability of plane-parallel flows of an ideal fluid Sov. Phys. Dokl. 135 1179-902
[23]  
Bedrossian J(1988)Nonlinear stability bounds for inviscid, two-dimensional, parallel or circular flows with monotonic vorticity, and the analogous three-dimensional quasi-geostrophic flows J. Fluid Mech. 191 575-129
[24]  
Coti Zelati M(1994)On scaling laws for the transition to turbulence in uniform-shear flows Eur. Phys. Lett. 27 129-453
[25]  
Bedrossian J(2016)Landau damping in Sobolev spaces for the Vlasov-HMF model Arch. Ration. Mech. Anal. 219 887-198
[26]  
Coti Zelati M(2005)Global stability of vortex solutions of the two-dimensional Navier–Stokes equation Commun. Math. Phys. 255 97-2660
[27]  
Glatt-Holtz N(1994)Time decay for solutions to the linearized Vlasov equation Transp. Theory Stat. Phys. 23 411-857
[28]  
Bedrossian J(2003)The effect of fine structure on the stability of planar vortices Eur. J. Mech. B/Fluids 22 179-411
[29]  
Masmoudi N(2009)On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem Indiana Univ. Math. J. 58 2623-1097
[30]  
Bedrossian J(1887)Stability of fluid motion: rectilinear motion of viscous fluid between two parallel plates Philos. Mag. 24 188-331