Vortex Axisymmetrization, Inviscid Damping, and Vorticity Depletion in the Linearized 2D Euler Equations

被引:0
作者
Jacob Bedrossian
Michele Coti Zelati
Vlad Vicol
机构
[1] University of Maryland,
[2] College Park,undefined
[3] Imperial College London,undefined
[4] Princeton University,undefined
[5] New York University,undefined
来源
Annals of PDE | 2019年 / 5卷
关键词
Euler equations; Inviscid damping; Vortex axisymmetrization; Vorticity depletion; Phase mixing; Scattering;
D O I
暂无
中图分类号
学科分类号
摘要
Coherent vortices are often observed to persist for long times in turbulent 2D flows even at very high Reynolds numbers and are observed in experiments and computer simulations to potentially be asymptotically stable in a weak sense for the 2D Euler equations. We consider the incompressible 2D Euler equations linearized around a radially symmetric, strictly monotone decreasing vorticity distribution. For sufficiently regular data, we prove the inviscid damping of the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-dependent radial and angular velocity fields with the optimal rates ur(t)≲⟨t⟩-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| u^r(t)\right\| \lesssim \langle t \rangle ^{-1}$$\end{document} and uθ(t)≲⟨t⟩-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\| u^\theta (t)\right\| \lesssim \langle t \rangle ^{-2}$$\end{document} in the appropriate radially weighted L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} spaces. We moreover prove that the vorticity weakly converges back to radial symmetry as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}, a phenomenon known as vortex axisymmetrization in the physics literature, and characterize the dynamics in higher Sobolev spaces. Furthermore, we prove that the θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document}-dependent angular Fourier modes in the vorticity are ejected from the origin as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow \infty $$\end{document}, resulting in faster inviscid damping rates than those possible with passive scalar evolution. This non-local effect is called vorticity depletion. Our work appears to be the first to find vorticity depletion relevant for the dynamics of vortices.
引用
收藏
相关论文
共 128 条
[1]  
Bajer K(2001)Accelerated diffusion in the centre of a vortex J. Fluid Mech. 437 395-411
[2]  
Bassom AP(2001)Disturbing vortices J. Fluid Mech. 426 95-133
[3]  
Gilbert AD(1998)The spiral wind-up of vorticity in an inviscid planar vortex J. Fluid Mech. 371 109-140
[4]  
Balmforth NJ(2013)Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations Proc. R. Soc. Edinb. Sect. A Math. 143 905-927
[5]  
Smith SGL(2017)On the stability threshold for the 3D Couette flow in Sobolev regularity Ann. Math. 157 541-608
[6]  
Young WR(2018)Landau damping in finite regularity for unconfined systems with screened interactions Commun. Pure Appl. Math. 71 537-576
[7]  
Bassom AP(2016)Enhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the 2D Couette flow Arch. Ration. Mech. Anal. 216 1087-1159
[8]  
Gilbert AD(2018)The Sobolev stability threshold for 2D shear flows near Couette J. Nonlinear Sci. 28 711-724
[9]  
Beck M(2017)Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows Arch. Ration. Mech. Anal. 224 1161-1204
[10]  
Wayne CE(2016)Invariant measures for passive scalars in the small noise inviscid limit Commun. Math. Phys. 348 101-127