Periodic-wave and semirational solutions for the (2 +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} 1)-dimensional Davey–Stewartson equations on the surface water waves of finite depth

被引:0
作者
Yu-Qiang Yuan
Bo Tian
Qi-Xing Qu
Xue-Hui Zhao
Xia-Xia Du
机构
[1] Beijing University of Posts and Telecommunications,State Key Laboratory of Information Photonics and Optical Communications, and School of Science
[2] University of International Business and Economics,School of Information
关键词
Water waves; (2 ;  1)-Dimensional Davey–Stewartson equations; Periodic-wave solutions; Semirational solutions; Kadomtsev–Petviashvili hierarchy reduction; 35N05; 35J05; 47H30;
D O I
10.1007/s00033-020-1252-6
中图分类号
学科分类号
摘要
The (2 +\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$+$$\end{document} 1)-dimensional Davey–Stewartson equations concerning the evolution of surface water waves with finite depth are studied. We derive the periodic-wave solutions through the Kadomtsev–Petviashvili hierarchy reduction. We obtain the growing-decaying periodic wave and three kinds of breathers via those solutions. We obtain the periodic wave takes on the growing and decaying property. Taking the long-wave limit on the periodic-wave solutions, we derive the semirational solutions describing the interaction of the rogue wave, lump, breather and periodic wave. We illustrate the lump and rogue wave and find that the rogue wave (lump) is the long-wave limit of the periodic wave (breather).
引用
收藏
相关论文
共 108 条
[1]  
Tasbozan O(2018)New solutions of fractional Drinfeld–Sokolov–Wilson system in shallow water waves Ocean Eng. 161 62-68
[2]  
Senol M(2019)Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow Physical Review E 100 042210-22
[3]  
Kurt A(2018)Nonlinear water waves in shallow water in the presence of constant vorticity: a Whitham approach Eur. J. Mech. B 72 12-367
[4]  
Ozkan O(2019)Sedimentation in a shallow brackish water lagoon influenced by wind-induced waves—a methodical study Estuar. Coast. Shelf Sci. 218 359-241
[5]  
Su JJ(2019)On the quintic time-dependent coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics Nonlinear Dyn. 96 229-643
[6]  
Gao YT(2020)Integrable turbulence for a coupled nonlinear Schrödinger system Phys. Lett. A 384 126119-2040
[7]  
Deng GT(1972)Weak nonlinear dispersive waves: a discussion centered around the Korteweg-de Vries equation SIAM Rev. 14 582-3755
[8]  
Jia TT(2019)Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation for the water waves Nonlinear Dynamics 97 2023-51
[9]  
Kharif C(2011)New exact solutions for the KdV equation with higher order nonlinearity by using the variational method Comput. Math. Appl. 62 3741-174
[10]  
Abid M(2019)Dark solitons for a variable-coefficient AB system in the geophysical fluids or nonlinear optics Eur. Phys. J. Plus 134 359-172