Divide-and-conquer recurrences - Classification of asymptotics

被引:0
作者
Derfel G. [1 ]
Vogl F. [2 ]
机构
[1] Dept. of Mathematics and Computer Science, Ben Gurion University, Beer Sheva 84105
[2] Abt. F. Techn. Mathematik, TU Wien, A-1040 Wien
关键词
Generate Function; Computer Science; Functional Equation; Recurrence Equation; Exponential Generate;
D O I
10.1007/PL00000132
中图分类号
学科分类号
摘要
We deal with a class of recurrence equations arising in the theory of algorithms, stochastic pocesses, computer science, etc. and give a classification theorem for asymptotics of their solutions. The method of the proof is based upon consideration of the exponential generating function, which is a solution of a linear nonhomogeneous functional equation with rescaling. © Birkhäuser Verlag, Basel, 2000.
引用
收藏
页码:243 / 257
页数:14
相关论文
共 16 条
[1]  
Adams C.R., On the linear ordinary q-difference equation, Ann. of Math., 30, 2, pp. 195-205, (1929)
[2]  
Derfel G., Thuswaldner J., Tichy R., Vogl F., Asymptotic analysis of a class of functional equations, Aequations Math., 55, pp. 91-105, (1998)
[3]  
Drmota M., Tichy R., Sequences, Discrepancies and Applications, Lecture Notes in Math., 1651, (1997)
[4]  
Flajolet P., Singularity analysis and asymptotics of Bernoulli sums, Theoretical Computer Science, 215, pp. 371-381, (1999)
[5]  
Flajolet P., Odlyzko A., Singularity analysis of generating functions, SIAM J. Discrete Mathematics, 3, 2, pp. 216-240, (1990)
[6]  
Flajolet P., Richmond B., Generalized digital trees and their difference-differential equations, Random Structures and Algorithms, 3, 3, pp. 305-320, (1992)
[7]  
Flajolet P., Sedgewick R., Digital search trees revisited, SIAM J. Comput., 15, pp. 748-767, (1986)
[8]  
Hosking J.R.M., Moments of order statistics of Cantor distribution, Statist. Probab. Lett., 19, pp. 161-165, (1994)
[9]  
Jacquet P., Szpankowski W., Analytical depoissonisation and its application, Theoretical Computer Science (Fundamental Studies Section), 201, 1-2, pp. 1-62, (1998)
[10]  
Knuth D.E., The Art of Computer Programming, 3, (1973)