Chebyshev scalarization of solutions to the vector equilibrium problems

被引:0
作者
X. H. Gong
机构
[1] Nanchang University,Department of Mathematics
来源
Journal of Global Optimization | 2011年 / 49卷
关键词
Vector equilibrium problem; Chebyshev scalarization; Weakly efficient solution; Henig efficient solution; Globally efficient solution; Superefficient solution; 90C47; 90C33;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give results on Chebyshev scalarization of weakly efficient solution, Henig efficient solution, globally efficient solution and superefficient solution to the vector equilibrium problems without convexity assumptions.
引用
收藏
页码:607 / 622
页数:15
相关论文
共 26 条
  • [1] Blum E.(1994)From optimization and variational inequalities to equilibrium problems Math. Stud. 63 123-145
  • [2] Oettli W.(1998)Vector variational inequality as a tool for studying vector optimization problems Nonlinear Anal. Theory Methods Appl. 34 745-765
  • [3] Lee G.M.(2001)On the connectedness of the solution set for the weak vector variational inequality J. Math. Anal. Appl. 260 1-5
  • [4] Kim D.S.(2001)Efficiency and Henig efficiency for vector equilibrium problems J. Optim. Theory Appl. 108 139-154
  • [5] Lee B.S.(2007)Connectedness of the solution sets and scalarization for vector equilibrium problems J. Optim. Theory Appl. 133 151-161
  • [6] Yun N.D.(2008)Connectedness of the set of efficient solutions for generalized systems J. Optim. Theory Appl. 138 189-196
  • [7] Cheng Y.H.(2008)Lower semicontinuity of the set of efficient solutions for generalized systems J. Optim. Theory Appl. 138 197-205
  • [8] Gong X.H.(2008)Continuity of the solution set to parametric weak vector equilibrium problems J. Optim. Theory Appl. 139 35-46
  • [9] Gong X.H.(2006)Scalarization and Kuhn–Tucker-like conditions for weak vector generalized quasivarational inequalities J. Optim. Theory Appl. 130 309-316
  • [10] Gong X.H.(2005)A nonlinear scalarization function and generalized quasi-vector equilibrium problems J. Glob. Optim. 32 451-466