Asymptotic normality of DHD estimators in a partially linear model

被引:0
作者
Hongchang Hu
Yu Zhang
Xiong Pan
机构
[1] Hubei Normal University,School of Mathematics and Statistics
[2] China University Geosciences,Faculty of Information Engineering
来源
Statistical Papers | 2016年 / 57卷
关键词
Partially linear regression model; Difference-based method; Huber–Dutter estimator; Asymptotic normality; Weak convergence rate; 62G05; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
The paper studies a partially linear regression model given by yi=xiTβ+f(ti)+εi,i=1,2,…,n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} y_i=x_i^T\beta +f(t_i)+\varepsilon _i,i=1,2,\ldots ,n, \end{aligned}$$\end{document}where {εi,i=1,2,…,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\varepsilon _i,i=1,2,\ldots , n\}$$\end{document} are independent and identically distributed random errors with zero mean and finite variance σ2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^2>0$$\end{document}. Using a difference based and the Huber–Dutter (DHD) approaches, the estimators of unknown parametric component β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and root variance σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} are given, and then the estimation of nonparametric component f(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\cdot )$$\end{document} is given by the wavelet method. The asymptotic normality of the DHD estimators of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} are investigated, and the weak convergence rate of the estimator of f(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\cdot )$$\end{document} is also investigated. In addition, for stationary m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-dependent sequence of random variables, the central limit theorem is also obtained. At last, two examples are presented to illustrate the proposed method.
引用
收藏
页码:567 / 587
页数:20
相关论文
共 56 条
  • [11] Bianco A(2005)Profile likelihood inferences on semiparametric varying-coefficient partially linear models Bernoulli 11 1031-1057
  • [12] Boente G(2011)Nonparametric indendence screening in sparse ultra-high-dimensional additive models J Am Stat Assoc 106 544-557
  • [13] Martinez E(2005)Ridge estimation of a semiparametric regression model J Comput Appl Math 176 215-222
  • [14] Carroll RJ(2012)Convergence rates of wavelet estimators in semiparametric regression models under NA samples Chin Ann Math 33 609-624
  • [15] Fan J(2013)Asymptotic normality of Huber–Dutter in a linear model with AR(1) processes J Stat Plan Inference 143 548-562
  • [16] Gijbels I(1999)Bayesian inference for semiparametric regression using a Fourier representation J R Stat Soc Ser B 61 863-879
  • [17] Wand MP(2002)The partially linear regressionmodel: Monte Carlo evidence fromthe projection pursuit regression approach Econ Lett 75 11-16
  • [18] Chang X(1985)Asymptotic behavior of robust estimators of regression and scale parameters with fixed carriers Ann Stat 13 1490-1497
  • [19] Qu L(1988)Kernel smoothing in partial linear models J R Stat Soc Ser B 50 413-436
  • [20] Chen H(2010)Difference-based ridge estimator of parameters in partial linear model Stat Pap 51 357-368