Asymptotic normality of DHD estimators in a partially linear model

被引:0
作者
Hongchang Hu
Yu Zhang
Xiong Pan
机构
[1] Hubei Normal University,School of Mathematics and Statistics
[2] China University Geosciences,Faculty of Information Engineering
来源
Statistical Papers | 2016年 / 57卷
关键词
Partially linear regression model; Difference-based method; Huber–Dutter estimator; Asymptotic normality; Weak convergence rate; 62G05; 62G20;
D O I
暂无
中图分类号
学科分类号
摘要
The paper studies a partially linear regression model given by yi=xiTβ+f(ti)+εi,i=1,2,…,n,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} y_i=x_i^T\beta +f(t_i)+\varepsilon _i,i=1,2,\ldots ,n, \end{aligned}$$\end{document}where {εi,i=1,2,…,n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{\varepsilon _i,i=1,2,\ldots , n\}$$\end{document} are independent and identically distributed random errors with zero mean and finite variance σ2>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^2>0$$\end{document}. Using a difference based and the Huber–Dutter (DHD) approaches, the estimators of unknown parametric component β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and root variance σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} are given, and then the estimation of nonparametric component f(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\cdot )$$\end{document} is given by the wavelet method. The asymptotic normality of the DHD estimators of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} and σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} are investigated, and the weak convergence rate of the estimator of f(·)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\cdot )$$\end{document} is also investigated. In addition, for stationary m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m$$\end{document}-dependent sequence of random variables, the central limit theorem is also obtained. At last, two examples are presented to illustrate the proposed method.
引用
收藏
页码:567 / 587
页数:20
相关论文
共 56 条
  • [1] Antoniads A(1994)Wavelet methods for cure estimation J Am Stat Assoc 89 1340-1353
  • [2] Gregoire G(2012)A note on Stein-type shrinkage estimator in partial linearmodels Statistics 46 673-685
  • [3] Mckeague IW(2015)Performance of Kibrias methods in partial linear ridge regression model Stat Pap 56 231-246
  • [4] Arashi M(2004)Robust estimators in semiparametric partly linear regression models J Stat Plan Inference 122 229-252
  • [5] Roozbeh M(2006)Robust tests in semiparametric partly linear regression models Scand J Stat 33 435-450
  • [6] Niroumand HA(1997)Generalized partially linear single-index models J Am Stat Assoc 92 477-489
  • [7] Arashi M(2004)Wavelet estimation of partially linear models Comput Stat Data Anal 47 31-48
  • [8] Valizadeh T(1988)Convergence rates for parametric components in a partly linear model Ann Stat 16 136-146
  • [9] Bianco A(1992)Generalized M-estimators for errors-in-variables regression Ann Stat 20 385-397
  • [10] Boente G(1986)Semiparametric estimates of the relation between weather and electricity sales J Am Stat Assoc 80 310-319