Local derivations of finitary incidence algebras

被引:0
作者
M. Khrypchenko
机构
[1] Universidade Federal de Santa Catarina,Departamento de Matemática
来源
Acta Mathematica Hungarica | 2018年 / 154卷
关键词
derivation; local derivation; finitary incidence algebra; primary 16W25; secondary 16S50;
D O I
暂无
中图分类号
学科分类号
摘要
Let P be a partially ordered set, R a commutative ring with identity and FI(P,R) the finitary incidence algebra of P over R. We prove that each R-linear local derivation of FI(P,R) is a derivation, which partially generalizes Theorem 3 of [21].
引用
收藏
页码:48 / 55
页数:7
相关论文
共 34 条
[1]  
Alizadeh R.(2015)Local derivations of full matrix rings Acta Math. Hungar., 145 433-439
[2]  
Bitarafan M. J.(2009)Idealization of a module J. Commut. Algebra, 1 3-56
[3]  
Anderson D.(1972)Automorphisms and derivations of incidence algebras Proc. Amer. Math. Soc., 36 351-356
[4]  
Winders M.(2005)Jordan derivations and antiderivations on triangular matrices Linear Algebra Appl., 397 235-244
[5]  
Baclawski K.(2007)Lie derivations on triangular matrices Linear Multilinear Algebra, 55 619-626
[6]  
Benkovič D.(1992)Characterizations of derivations on some normed algebras with involution J. Algebra, 152 454-462
[7]  
Benkovič D.(1993)Mappings which preserve idempotents, local automorphisms, and local derivations Canad. J. Math. 45 483-496
[8]  
Brešar M.(2008)Nonlinear Lie derivations on upper triangular matrices Linear Multilinear Algebra, 56 725-730
[9]  
Brešar M.(1993)Derivations of upper triangular matrix rings Linear Algebra Appl., 187 263-267
[10]  
Šemrl P.(1995)Automorphisms and derivations of upper triangular matrix rings Linear Algebra Appl., 221 205-218