Tailoring Grain Size and Precipitation via Aging for Improved Elastocaloric Stability in a Cold-Rolled (Ni,Cu)-Rich Ti–Ni–Cu Alloy

被引:0
作者
Pengfei Dang
Yumei Zhou
Xiangdong Ding
Jun Sun
Turab Lookman
Dezhen Xue
机构
[1] Xi’an Jiaotong University,State Key Laboratory for Mechanical Behavior of Materials
[2] AiMaterials Research LLC,undefined
来源
Shape Memory and Superelasticity | 2023年 / 9卷
关键词
Elastocaloric effect; Shape memory alloys; Functional stability; Grain refinement; Precipitation;
D O I
暂无
中图分类号
学科分类号
摘要
Critical challenges remain in applying shape memory alloys to solid-state refrigeration. In particular, addressing the degradation of elastocaloric response during repetitive loading is an outstanding issue. Refined grains or dispersed precipitates provide high resistance to dislocation activity during transformation and therefore would be expected to improve elastocaloric stability in shape memory alloys. To this end, we age a cold-rolled (Ni,Cu)-rich Ti–Ni–Cu alloy at different temperatures to tailor the microstructure with refined grains and dispersed Ti(Ni,Cu)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} precipitates. We find that with increasing aging temperature, precipitates coarsen with a reduction in density. Simultaneously, the microstructure evolves from being in a nanocrystalline state to an equiaxed coarse-grained state. The synergy between nanocrystalline structure and dispersed coherent Ti(Ni,Cu)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_2$$\end{document} nanoprecipitates in the alloy aged at 400 ∘\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{\circ }$$\end{document}C gives rise to stable elastocaloric response with a respectable adiabatic temperature change (ΔTad\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T_{\text {ad}}$$\end{document}) of 13.9 K and a recoverable strain of 3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \%$$\end{document}. Further increase in the aging temperature increases the transformation strain and ΔTad\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta T_{\text {ad}}$$\end{document}, however, this is at the expense of cyclic stability due to prominent plastic activity in parallel with phase transformation. These findings offer microstructural design insights into the development of high-performance elastocaloric materials and superelastic alloys.
引用
收藏
页码:334 / 344
页数:10
相关论文
共 353 条
  • [1] Hou H(2022)Materials, physics and systems for multicaloric cooling Nat Rev Mater 7 633-652
  • [2] Qian S(2020)Caloric materials for cooling and heating Science 370 797-803
  • [3] Takeuchi I(2019)A review of the state of the art of solid-state caloric cooling processes at room-temperature before 2019 Int J Refrig 106 66-88
  • [4] Moya X(2014)Mathur ND caloric materials near ferroic phase transitions Nat Mater 13 439-450
  • [5] Mathur ND(2013)Advanced materials for solid-state refrigeration J Mater Chem A 1 4925-4936
  • [6] Greco A(2021)Temperature-field history dependence of the elastocaloric effect for a strain glass alloy J Mater Sci Technol 366 216-221
  • [7] Aprea C(2019)Torsional refrigeration by twisted, coiled, and supercoiled fibers Science 567 506-510
  • [8] Maiorino A(2019)Colossal barocaloric effects in plastic crystals Nature 5 1500361-20
  • [9] Masselli C(2015)The elastocaloric effect: a way to cool efficiently Adv Energy Mater 116 9-234
  • [10] Moya X(2020)Solid-state cooling by stress: a perspective Appl Phys Lett 100 230-298