Multiple solutions of discrete Schrödinger equations with growing potentials

被引:0
作者
Liqian Jia
Guanwei Chen
机构
[1] University of Jinan,School of Mathematical Sciences
来源
Advances in Difference Equations | / 2016卷
关键词
discrete nonlinear Schrödinger equations; variational methods; superlinear; homoclinic solutions; 35Q51; 35Q55; 39A12; 39A70;
D O I
暂无
中图分类号
学科分类号
摘要
Under some weaker conditions than elsewhere, we obtain infinitely many homoclinic solutions for a class of discrete Schrödinger equations in infinite m dimensional lattices with nonlinearities being superlinear at infinity by using variational methods. Our result extends some existing results in the literature.
引用
收藏
相关论文
共 47 条
[1]  
Kopidakis G(2001)Targeted energy transfer through discrete breathers in nonlinear systems Phys. Rev. Lett. 87 817-823
[2]  
Aubry S(2003)Discretizing light behaviour in linear and nonlinear waveguide lattices Nature 424 5496-5507
[3]  
Tsironis GP(2006)Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation Phys. Rev. Lett. 97 389-413
[4]  
Christodoulides DN(2012)Discrete nonlinear Schrödinger equations with superlinear nonlinearities Appl. Math. Comput. 218 787-798
[5]  
Lederer F(2013)Ground state and geometrically distinct solitons of discrete nonlinear Schrödinger equations with saturable nonlinearities Stud. Appl. Math. 131 27-40
[6]  
Silberberg Y(2014)Homoclinic solutions of discrete nonlinear Schrödinger equations with asymptotically or super linear terms Appl. Math. Comput. 232 419-430
[7]  
Livi R(2006)Gap solitons in periodic discrete nonlinear equations Nonlinearity 19 3219-3236
[8]  
Franzosi R(2007)Gap solitons in periodic discrete nonlinear Schrödinger equations. II. A generalized Nehari manifold approach Discrete Contin. Dyn. Syst. 19 254-265
[9]  
Oppo GL(2008)Periodic and decaying solutions in discrete nonlinear Schrödinger with saturable nonlinearity Proc. R. Soc. A 464 1475-1488
[10]  
Chen G(2010)Gap solitons in periodic discrete nonlinear Schrödinger equations with saturable nonlinearities J. Math. Anal. Appl. 371 1727-1740