Supergravity solution-generating techniques and canonical transformations of σ-models from O(D, D)

被引:0
作者
Riccardo Borsato
Sibylle Driezen
机构
[1] Universidade de Santiago de Compostela,Instituto Galego de Física de Altas Enerxías (IGFAE)
来源
Journal of High Energy Physics | / 2021卷
关键词
Sigma Models; String Duality; Supergravity Models;
D O I
暂无
中图分类号
学科分类号
摘要
Within the framework of the flux formulation of Double Field Theory (DFT) we employ a generalised Scherk-Schwarz ansatz and discuss the classification of the twists that in the presence of the strong constraint give rise to constant generalised fluxes interpreted as gaugings. We analyse the various possibilities of turning on the fluxes Hijk, Fijk, Qijk and Rijk, and the solutions for the twists allowed in each case. While we do not impose the DFT (or equivalently supergravity) equations of motion, our results provide solution-generating techniques in supergravity when applied to a background that does solve the DFT equations. At the same time, our results give rise also to canonical transformations of 2-dimensional σ-models, a fact which is interesting especially because these are integrability-preserving transformations on the worldsheet. Both the solution-generating techniques of supergravity and the canonical transformations of 2-dimensional σ-models arise as maps that leave the generalised fluxes of DFT and their flat derivatives invariant. These maps include the known abelian/non-abelian/Poisson-Lie T-duality transformations, Yang-Baxter deformations, as well as novel generalisations of them.
引用
收藏
相关论文
共 197 条
[1]  
Buscher TH(1987)( Phys. Lett. B 194 59-undefined
[2]  
Buscher TH(1988)) Phys. Lett. B 201 466-undefined
[3]  
Klimčík C(2021)′ Phys. Lett. B 812 136009-undefined
[4]  
de la Ossa XC(1993)( Nucl. Phys. B 403 377-undefined
[5]  
Quevedo F(1993)) Phys. Lett. B 319 438-undefined
[6]  
Gasperini M(1994) × Nucl. Phys. B 421 173-undefined
[7]  
Ricci R(1994) × Nucl. Phys. B 424 155-undefined
[8]  
Veneziano G(1995)( Nucl. Phys. B 435 147-undefined
[9]  
Giveon A(2011)) Nucl. Phys. B 846 21-undefined
[10]  
Roček M(1995)′ Phys. Lett. B 351 455-undefined