Infinite Graphic Matroids

被引:0
作者
Nathan Bowler
Johannes Carmesin
Robin Christian
机构
[1] University of Hamburg,Department of Pure Mathematics and Mathematical Statistics
[2] University of Cambridge,undefined
来源
Combinatorica | 2018年 / 38卷
关键词
05B35; 05C63;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce a class of infinite graphic matroids that contains all the motivating examples and satisfies an extension of Tutte’s excluded minors characterisation of finite graphic matroids.We prove that its members can be represented by certain ‘graph-like’ topological spaces previously considered by Thomassen and Vella.
引用
收藏
页码:305 / 339
页数:34
相关论文
共 21 条
[1]  
Borujeni S. H. A.(2015)Thin sums matroids and duality Advances in Mathematics 271 1-29
[2]  
Bowler N.(2006)MacLane’s planarity criterion for locally finite graphs J. Combin. Theory (Series B) 96 225-239
[3]  
Bruhn H.(2011)Infinite matroids in graphs Discrete Math. 311 1461-1471
[4]  
Stein M.(2013)Axioms for infinite matroids Adv. Math. 239 18-46
[5]  
Bruhn H.(2010)Duality of ends Combin. Probab. Comput. 19 47-60
[6]  
Diestel R.(2012)Finite connectivity in infinite matroids European Journal of Combinatorics 33 1900-1912
[7]  
Bruhn H.(2006)Arboriticity and tree-packing in locally finite graphs J. Combin. Theory (Series B) 96 302-312
[8]  
Diestel R.(2008)Graph-like continua augmenting arcs, and Menger’s theorem, Combinatorica 28 595-623
[9]  
Kriesell M.(1959)Matroids and graphs Trans. Amer. Math. Soc. 90 527-552
[10]  
Pendavingh R.(2008)Cycle spaces in topological spaces J. Graph Theory 59 115-144