Asymptotic behaviour for a nonlocal diffusion equation on a lattice

被引:0
作者
Liviu I. Ignat
Julio D. Rossi
机构
[1] U. Autónoma de Madrid,Departamento de Matemáticas
[2] Institute of Mathematics of the Romanian Academy,Depto. Matemática
[3] FCEyN UBA (1428),undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2008年 / 59卷
关键词
35B40; 45A05; 45M05; Nonlocal diffusion; asymptotic behaviour;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we study the asymptotic behaviour as t → ∞ of solutions to a nonlocal diffusion problem on a lattice, namely, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u^{\prime}_{n}(t) = \sum_{{j\in}{{{\mathbb{Z}}}^{d}}} J_{n-j}u_{j}(t)-u_{n}(t)$$ \end{document} with t ≥ 0 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$n \in {\mathbb{Z}}^{d}$$ \end{document}. We assume that J is nonnegative and verifies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sum_{{n \in {\mathbb{Z}}}^{d}}J_{n}= 1$$ \end{document}. We find that solutions decay to zero as t → ∞ and prove an optimal decay rate using, as our main tool, the discrete Fourier transform.
引用
收藏
页码:918 / 925
页数:7
相关论文
empty
未找到相关数据