In this paper we study the asymptotic behaviour as t → ∞ of solutions to a nonlocal diffusion problem on a lattice, namely, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$u^{\prime}_{n}(t) = \sum_{{j\in}{{{\mathbb{Z}}}^{d}}} J_{n-j}u_{j}(t)-u_{n}(t)$$
\end{document} with t ≥ 0 and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$n \in {\mathbb{Z}}^{d}$$
\end{document}. We assume that J is nonnegative and verifies \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\sum_{{n \in {\mathbb{Z}}}^{d}}J_{n}= 1$$
\end{document}. We find that solutions decay to zero as t → ∞ and prove an optimal decay rate using, as our main tool, the discrete Fourier transform.