Superconformal duality-invariant models and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM effective action

被引:0
作者
Sergei M. Kuzenko
机构
[1] The University of Western Australia,Department of Physics M013
关键词
Extended Supersymmetry; Superspaces; Supersymmetry and Duality;
D O I
10.1007/JHEP09(2021)180
中图分类号
学科分类号
摘要
We present N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal U(1) duality-invariant models for an Abelian vector multiplet coupled to conformal supergravity. In a Minkowski background, such a nonlinear theory is expected to describe (the planar part of) the low-energy effective action for the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SU(N) super-Yang-Mills (SYM) theory on its Coulomb branch where (i) the gauge group SU(N) is spontaneously broken to SU(N − 1) × U(1); and (ii) the dynamics is captured by a single N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 vector multiplet associated with the U(1) factor of the unbroken group. Additionally, a local U(1) duality-invariant action generating the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 super-Weyl anomaly is proposed. By providing a new derivation of the recently constructed U(1) duality-invariant N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal electrodynamics, we introduce its SL(2, ℝ) duality-invariant coupling to the dilaton-axion multiplet.
引用
收藏
相关论文
共 205 条
  • [41] Zupnik BM(2018) = 2 Phys. Rev. D 98 085015-undefined
  • [42] Ivanov EA(2014) = 2 Phys. Lett. B 731 298-undefined
  • [43] Zupnik BM(1995) = 2 Phys. Rev. D 52 R4277-undefined
  • [44] Ivanov EA(2012) = 4 Phys. Rev. D 86 045013-undefined
  • [45] Zupnik BM(2013) = 2 JHEP 12 062-undefined
  • [46] Aschieri P(2013) = 2 JHEP 10 151-undefined
  • [47] Ferrara S(2020) = 4 Phys. Rev. D 102 121703-undefined
  • [48] Zumino B(2020) = 2 Phys. Lett. B 810 135840-undefined
  • [49] Chemissany W(1974) = 2 Nucl. Phys. B 79 413-undefined
  • [50] Kallosh R(1978)3 Phys. Lett. B 74 51-undefined