Superconformal duality-invariant models and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM effective action

被引:0
作者
Sergei M. Kuzenko
机构
[1] The University of Western Australia,Department of Physics M013
关键词
Extended Supersymmetry; Superspaces; Supersymmetry and Duality;
D O I
10.1007/JHEP09(2021)180
中图分类号
学科分类号
摘要
We present N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 superconformal U(1) duality-invariant models for an Abelian vector multiplet coupled to conformal supergravity. In a Minkowski background, such a nonlinear theory is expected to describe (the planar part of) the low-energy effective action for the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SU(N) super-Yang-Mills (SYM) theory on its Coulomb branch where (i) the gauge group SU(N) is spontaneously broken to SU(N − 1) × U(1); and (ii) the dynamics is captured by a single N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 vector multiplet associated with the U(1) factor of the unbroken group. Additionally, a local U(1) duality-invariant action generating the N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 super-Weyl anomaly is proposed. By providing a new derivation of the recently constructed U(1) duality-invariant N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1 superconformal electrodynamics, we introduce its SL(2, ℝ) duality-invariant coupling to the dilaton-axion multiplet.
引用
收藏
相关论文
共 205 条
  • [1] Montonen C(1977) = 4 Phys. Lett. B 72 117-undefined
  • [2] Olive DI(1979) SL(2 Phys. Lett. B 83 321-undefined
  • [3] Osborn H(1994) ℤ) Phys. Lett. B 329 217-undefined
  • [4] Sen A(1994) = 2 Nucl. Phys. B 431 484-undefined
  • [5] Seiberg N(1998) = 4 Adv. Theor. Math. Phys. 2 231-undefined
  • [6] Witten E(1999) = 2 Nucl. Phys. B 544 218-undefined
  • [7] Maldacena JM(2000) = 4 JHEP 03 034-undefined
  • [8] Gonzalez-Rey F(2014) = 2 JHEP 01 088-undefined
  • [9] Kulik B(1998) = 4 Phys. Lett. B 430 71-undefined
  • [10] Park IY(1998) = 4 SU( Phys. Lett. B 434 303-undefined