p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{p}$$\end{document}-Laplacian problems involving critical Hardy–Sobolev exponents

被引:0
|
作者
Kanishka Perera
Wenming Zou
机构
[1] Florida Institute of Technology,Department of Mathematical Sciences
[2] Tsinghua University,Department of Mathematical Sciences
关键词
-Laplacian problems; Critical Hardy–Sobolev exponents; Existence; Multiplicity; Bifurcation; Critical point theory; Cohomological index; Pseudo-index; Primary 35J92; 35B33; Secondary 35J20;
D O I
10.1007/s00030-018-0517-7
中图分类号
学科分类号
摘要
We prove existence, multiplicity, and bifurcation results for p-Laplacian problems involving critical Hardy–Sobolev exponents. Our results are mainly for the case λ≥λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \ge \lambda _1$$\end{document} and extend results in the literature for 0<λ<λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< \lambda < \lambda _1$$\end{document}. In the absence of a direct sum decomposition, we use critical point theorems based on a cohomological index and a related pseudo-index.
引用
收藏
相关论文
共 50 条