Upper bound for the number of independent sets in graphs

被引:0
作者
A. A. Sapozhenko
机构
[1] Moscow State University,Faculty of Computational Mathematics and Cybernetics
来源
Doklady Mathematics | 2007年 / 75卷
关键词
Regular Graph; DOKLADY Mathematic; Leninskie Gory; Complete Bipartite Graph; Independence Number;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:447 / 448
页数:1
相关论文
共 50 条
[41]   Structure of independent sets in direct products of some vertex-transitive graphs [J].
Xing Bo Geng ;
Jun Wang ;
Hua Jun Zhang .
Acta Mathematica Sinica, English Series, 2012, 28 :697-706
[42]   Structure of Independent Sets in Direct Products of Some Vertex-transitive Graphs [J].
Xing Bo GENG ;
Jun WANG ;
Hua Jun ZHANG .
Acta Mathematica Sinica,English Series, 2012, (04) :697-706
[43]   Structure of independent sets in direct products of some vertex-transitive graphs [J].
Geng, Xing Bo ;
Wang, Jun ;
Zhang, Hua Jun .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (04) :697-706
[44]   A tight bound for independent domination of cubic graphs without 4-cycles [J].
Cho, Eun-Kyung ;
Choi, Ilkyoo ;
Kwon, Hyemin ;
Park, Boram .
JOURNAL OF GRAPH THEORY, 2023, 104 (02) :372-386
[45]   On Graphs in Which the Hoffman Bound for Cocliques Equals the Cvetcovich Bound [J].
Makhnev, A. A. .
DOKLADY MATHEMATICS, 2011, 83 (03) :340-343
[46]   On graphs in which the Hoffman bound for cocliques equals the Cvetcovich bound [J].
A. A. Makhnev .
Doklady Mathematics, 2011, 83 :340-343
[47]   Independence number and the number of maximum independent sets in pseudofractal scale-free web and Sierpinski gasket [J].
Shan, Liren ;
Li, Huan ;
Zhang, Zhongzhi .
THEORETICAL COMPUTER SCIENCE, 2018, 720 :47-54
[48]   Regular graphs with equal matching number and independence number [J].
Yang, Zixuan ;
Lu, Hongliang .
DISCRETE APPLIED MATHEMATICS, 2022, 310 :86-90
[49]   An Extension of the Chvatal-ErdAs Theorem: Counting the Number of Maximum Independent Sets [J].
Chen, Guantao ;
Li, Yinkui ;
Ma, Haicheng ;
Wu, Tingzeng ;
Xiong, Liming .
GRAPHS AND COMBINATORICS, 2015, 31 (04) :885-896
[50]   Nordhaus-Gaddum-Type Results for the k-Independent Number of Graphs [J].
Wang, Zhao ;
Liu, Hongfang ;
Liu, Yuhu .
JOURNAL OF INTERCONNECTION NETWORKS, 2024, 24 (01)