Upper bound for the number of independent sets in graphs

被引:0
作者
A. A. Sapozhenko
机构
[1] Moscow State University,Faculty of Computational Mathematics and Cybernetics
来源
Doklady Mathematics | 2007年 / 75卷
关键词
Regular Graph; DOKLADY Mathematic; Leninskie Gory; Complete Bipartite Graph; Independence Number;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:447 / 448
页数:1
相关论文
共 50 条
[41]   On graphs in which the Hoffman bound for cocliques equals the Cvetcovich bound [J].
A. A. Makhnev .
Doklady Mathematics, 2011, 83 :340-343
[42]   Independence number and the number of maximum independent sets in pseudofractal scale-free web and Sierpinski gasket [J].
Shan, Liren ;
Li, Huan ;
Zhang, Zhongzhi .
THEORETICAL COMPUTER SCIENCE, 2018, 720 :47-54
[43]   Regular graphs with equal matching number and independence number [J].
Yang, Zixuan ;
Lu, Hongliang .
DISCRETE APPLIED MATHEMATICS, 2022, 310 :86-90
[44]   An Extension of the Chvatal-ErdAs Theorem: Counting the Number of Maximum Independent Sets [J].
Chen, Guantao ;
Li, Yinkui ;
Ma, Haicheng ;
Wu, Tingzeng ;
Xiong, Liming .
GRAPHS AND COMBINATORICS, 2015, 31 (04) :885-896
[45]   Independent sets in {claw, K4}-free 4-regular graphs [J].
Kang, Liying ;
Wang, Dingguo ;
Shan, Erfang .
DISCRETE MATHEMATICS, 2014, 332 :40-44
[46]   Improved asymptotic upper bounds for the minimum number of longest cycles in regular graphs [J].
Jooken, Jorik .
DISCRETE APPLIED MATHEMATICS, 2024, 356 :133-141
[47]   An Extension of the Chvátal–Erdős Theorem: Counting the Number of Maximum Independent Sets [J].
Guantao Chen ;
Yinkui Li ;
Haicheng Ma ;
Tingzeng Wu ;
Liming Xiong .
Graphs and Combinatorics, 2015, 31 :885-896
[48]   An upper bound for the number of eigenvalues of a non-self-adjoint Schröbinger operator [J].
S. A. Stepin .
Doklady Mathematics, 2014, 89 :202-205
[49]   Sharp Upper Bounds on the k-Independence Number in Graphs with Given Minimum and Maximum Degree [J].
Suil, O. ;
Shi, Yongtang ;
Taoqiu, Zhenyu .
GRAPHS AND COMBINATORICS, 2021, 37 (02) :393-408
[50]   The number of edge covers of bipartite graphs or of shortest paths with fixed endpoints in the space of compact sets in Rn [J].
Z. N. Ovsyannikov .
Doklady Mathematics, 2016, 93 :65-68