Upper bound for the number of independent sets in graphs

被引:0
作者
A. A. Sapozhenko
机构
[1] Moscow State University,Faculty of Computational Mathematics and Cybernetics
来源
Doklady Mathematics | 2007年 / 75卷
关键词
Regular Graph; DOKLADY Mathematic; Leninskie Gory; Complete Bipartite Graph; Independence Number;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:447 / 448
页数:1
相关论文
共 50 条
[31]   Upper minus total domination number of regular graphs [J].
Zhen-lin Li ;
Xin-zhong Lü .
Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 :69-74
[32]   On maximum independent sets in P5-free graphs [J].
Randerath, Bert ;
Schiermeyer, Ingo .
DISCRETE APPLIED MATHEMATICS, 2010, 158 (09) :1041-1044
[33]   Independent sets in direct products of vertex-transitive graphs [J].
Zhang, Huajun .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (03) :832-838
[34]   Zero-divisor Graphs of Small Upper Irredundance Number [J].
Louartiti, Khalid .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
[35]   Invariant Gaussian processes and independent sets on regular graphs of large girth [J].
Csoka, Endre ;
Gerencser, Balazs ;
Harangi, Viktor ;
Virag, Balint .
RANDOM STRUCTURES & ALGORITHMS, 2015, 47 (02) :284-303
[36]   Independent Sets in Tensor Products of Three Vertex-transitive Graphs [J].
Mao, Huiqun ;
Zhang, Huajun .
TAIWANESE JOURNAL OF MATHEMATICS, 2021, 25 (02) :207-222
[37]   On blockers and transversals of maximum independent sets in co-comparability graphs [J].
Lucke, Felicia ;
Ries, Bernard .
DISCRETE APPLIED MATHEMATICS, 2024, 356 :307-321
[38]   An Upper Bound on the Number of Edges in an Almost Planar Bipartite Graph [J].
Karpov D.V. .
Journal of Mathematical Sciences, 2014, 196 (6) :737-746
[39]   Upper bounds for the 2-hued chromatic number of graphs in terms of the independence number [J].
Dehghan, A. ;
Ahadi, A. .
DISCRETE APPLIED MATHEMATICS, 2012, 160 (15) :2142-2146
[40]   THE SHARP LOWER BOUND FOR THE SPECTRAL RADIUS OF CONNECTED GRAPHS WITH THE INDEPENDENCE NUMBER [J].
Jin, Ya-Lei ;
Zhang, Xiao-Dong .
TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02) :419-431