Upper bound for the number of independent sets in graphs

被引:0
作者
A. A. Sapozhenko
机构
[1] Moscow State University,Faculty of Computational Mathematics and Cybernetics
来源
Doklady Mathematics | 2007年 / 75卷
关键词
Regular Graph; DOKLADY Mathematic; Leninskie Gory; Complete Bipartite Graph; Independence Number;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:447 / 448
页数:1
相关论文
共 50 条
[21]   On Threshold Probability for the Stability of Independent Sets in Distance Graphs [J].
Pyaderkin, M. M. .
MATHEMATICAL NOTES, 2019, 106 (1-2) :274-285
[22]   On Threshold Probability for the Stability of Independent Sets in Distance Graphs [J].
M. M. Pyaderkin .
Mathematical Notes, 2019, 106 :274-285
[23]   An upper bound for higher order eigenvalues of symmetric graphs [J].
Kobayashi, Shinichiro .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2021, 73 (04) :1277-1287
[24]   Graphs such that All Minimum Dominating Sets Intersect All Maximally Independent Sets [J].
Johnson, P. D., Jr. ;
Prier, D. R. .
UTILITAS MATHEMATICA, 2012, 89 :211-224
[25]   The Number of Independent Sets in a Graph with Small Maximum Degree [J].
David Galvin ;
Yufei Zhao .
Graphs and Combinatorics, 2011, 27 :177-186
[26]   The Number of Independent Sets in a Graph with Small Maximum Degree [J].
Galvin, David ;
Zhao, Yufei .
GRAPHS AND COMBINATORICS, 2011, 27 (02) :177-186
[27]   FURTHER RESULTS ON THE INDEPENDENT ROMAN DOMINATION NUMBER OF GRAPHS [J].
Cabrera Martinez, Abel ;
Hernandez Mira, Frank A. .
QUAESTIONES MATHEMATICAE, 2023, 46 (02) :347-357
[28]   Upper Minus Total Domination Number of Regular Graphs [J].
Li, Zhen-lin ;
Lu, Xin-zhong .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (01) :69-74
[29]   Upper signed k-domination number in graphs [J].
Zhou, Ligang ;
Shan, Erfang ;
Zhao, Yancai .
ARS COMBINATORIA, 2015, 122 :307-318
[30]   Upper Minus Total Domination Number of Regular Graphs [J].
Zhen-lin LI ;
Xin-zhong Lü .
Acta Mathematicae Applicatae Sinica, 2017, 33 (01) :69-74