Real-Time Analysis of Secondary Organic Aerosol Particles Formed from Cyclohexene Ozonolysis Using a Laser-Ionization SingleParticle Aerosol Mass Spectrometer

被引:0
作者
Narukawa M. [1 ]
Matsumi Y. [1 ]
Matsumoto J. [1 ,4 ]
Takahashi K. [1 ,5 ]
Yabushita A. [2 ]
Sato K. [3 ]
Imamura T. [3 ]
机构
[1] Solar-Terrestrial Environment Laboratory, Nagoya University, 3-13 Honohara, Toyokawa, Aichi
[2] Horiba, Ltd., 2 Miyanohigashi, Kisshoin, Minami, Kyoto
[3] National Institute for Environmental Studies, 16–2 Onogawa, Tsukuba, Ibaraki
[4] Integrated Research Institute, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama
[5] Kyoto University Pioneering Research Unit for Next Generation, Kyoto University, Gokasho, Uji, Kyoto
关键词
D O I
10.2116/analsci.23.502
中图分类号
学科分类号
摘要
A real-time analysis of secondary organic aerosol (SOA) particles formed from cyclohexene ozonolysis in a smog chamber was performed using a laser-ionization single-particle aerosol mass spectrometer (LISPA-MS). The instrument obtains both size and chemical compositions of individual aerosol particles with a high time-resolution (~2 s at the maximum). Both positive and negative-ion mass spectra are obtained. Standard particles generated from dicarboxylic acid solutions using an atomizer were also analyzed. For both standard and SOA particles, the negative-ion mass spectra provided information about the molecular weights of the organic compounds in the particles, since the intense ions in the negative-ion mass spectra are mainly attributable to the molecular-related ions [M-H]-. It was demonstrated that the realtime single-particle analysis of SOA particles by the LISPA-MS technique can reveal the formation and transformation processes of SOA particle in smog chambers. © 2007, The Japan Society for Analytical Chemistry.
引用
收藏
页码:502 / 507
页数:5
相关论文
共 26 条
[1]  
Saxena P., Hildemann L.M., J. Atmos. Chem., 24, (1996)
[2]  
Kanakidou M., Seinfeld J.H., Pandis S.N., Barnes I., Dentener F.J., Facchini M.C., Van Dingenen R., Ervens B., Nenes A., Nielsen C.J., Swietlicki E., Putaud J.P., Balkanski Y., Fuzzi S., Horth J., Moortgat G.K., Winterhalter R., Myhre C.E.L., Tsigaridis K., Vignati E., Stephanou E.G., Wilson J., Atmos. Chem. Phys., 5, (2005)
[3]  
Seinfeld J.H., Pankow J.F., Annu. Rev. Phys. Chem., 54, (2003)
[4]  
Turpin B.J., Saxena P., Andrews E., Atmos. Environ., 34, (2000)
[5]  
Thomson D.S., Schein M.E., Murphy D.M., Aerosol Sci. Technol., 33, (2000)
[6]  
Gard E., Mayer J.E., Morrical B.D., Dienes T., Fergenson D.P., Prather K.A., Anal. Chem., 69, (1997)
[7]  
Mallina R.V., Wexler A.S., Rhoads K.P., Johnston M.V., Aerosol Sci. Technol., 33, (2000)
[8]  
Jayne J.T., Leard D.C., Zhang X., Davidovits P., Smith K.A., Kolb C.E., Worsnop D.R., Aerosol Sci. Technol., 33, (2000)
[9]  
Middlebrook A.M., Murphy D.M., Lee S.-H., Thomson D.S., Prather K.A., Wenzel R.J., Liu D.-Y., Phares D.J., Rhoads K.P., Wexler A.S., Johnston M.V., Jimenez J.L., Jayne J.T., Worsnop D.R., Yourshaw I., Seinfeld J.H., Flagan R.C., J. Geophys. Res., 108, (2003)
[10]  
Nash D.G., Baer T., Johnston M.V., Int. J. Mass. Spectrom., 258, (2006)