Analysis of a Time-Stepping Discontinuous Galerkin Method for Fractional Diffusion-Wave Equations with Nonsmooth Data

被引:0
作者
Binjie Li
Tao Wang
Xiaoping Xie
机构
[1] Sichuan University,School of Mathematics
[2] South China Normal University,South China Research Center for Applied Mathematics and Interdisciplinary Studies
来源
Journal of Scientific Computing | 2020年 / 82卷
关键词
Fractional diffusion-wave problem; Discontinuous Galerkin method; Discrete Laplace transform; Convergence; Nonsmooth data;
D O I
暂无
中图分类号
学科分类号
摘要
This paper analyzes a time-stepping discontinuous Galerkin method for fractional diffusion-wave problems. This method uses piecewise constant functions in the temporal discretization and continuous piecewise linear functions in the spatial discretization. Nearly optimal convergence with respect to the regularity of the solution is established when the source term is nonsmooth, and nearly optimal convergence rate ln(1/τ)(ln(1/h)h2+τ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \scriptstyle \ln (1/\tau )(\sqrt{\ln (1/h)}h^2+\tau ) $$\end{document} is derived under appropriate regularity assumption on the source term. Convergence is also established without smoothness assumption on the initial value. Finally, numerical experiments are performed to verify the theoretical results.
引用
收藏
相关论文
共 30 条
[1]  
Cuesta E(2006)Convolution quadrature time discretization of fractional diffusion-wave equations Math. Comput. 75 673-696
[2]  
Lubich C(2016)An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data IMA J. Numer. Anal. 36 197-221
[3]  
Palencia C(1986)Discretized fractional calculus SIAM J. Math. Anal. 17 704-719
[4]  
Jin B(1996)Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term Math. Comput. 65 1-17
[5]  
Lazarov R(2019)Convergence analysis of a Petrov–Galerkin method for fractional wave problems with nonsmooth data J. Sci. Comput. 80 957-992
[6]  
Zhou Z(2010)Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation IMA J. Numer. Anal. 30 208-230
[7]  
Lubich C(2010)Numerical solution via laplace transforms of a fractional order evolution equation J. Integral Equ. Appl. 22 57-94
[8]  
Lubich C(1993)Numerical solution of an evolution equation with a positive type memory term J. Aust. Math. Soc. Ser. B Appl. Math. 35 23-70
[9]  
Sloan I(1996)Discretization with variable time steps of an evolution equation with a positive-type memory term J. Comput. Appl. Math. 69 49-69
[10]  
Thomée V(2007)A second-order accurate numerical method for a fractional wave equation Numer. Math. 105 481-510