Behavior of blow-up solutions for quasilinear parabolic equations

被引:0
作者
Yevgenieva Y.A. [1 ]
机构
[1] Institute of Applied Mathematics and Mechanics of the NAS of Ukraine, Slov’yans’k
关键词
method of energy estimates; Quasilinear parabolic equation; singular boundary data; weak solution;
D O I
10.1007/s10958-020-04974-z
中图分类号
学科分类号
摘要
We study the quasilinear parabolic equation (|u|q − 1u)t − Δpu = 0 in a multidimensional domain (0, T) × Ω under the condition u(t; x) = f(t,x) on (0,T) × əΩ, where the boundary function f blows-up at a finite time T, i.e., f(t; x) → ∞ as t → T. For p q > 0 and the boundary function f with power-like behavior, the upper bounds of weak solutions of the problem are obtained. The behavior of solutions at the transition from the case where p > q to p = q is investigated. A general approach within the method of energy estimates to such problems is described. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:804 / 816
页数:12
相关论文
共 29 条
[1]  
Alt H.W., Luckhaus S., Quasilinear elliptic-parabolic differential equations, Math. Z., 183, 3, pp. 311-341, (1983)
[2]  
Barre de Saint-Venant A.-J.-C., De la Torsion des Prismes, (1855)
[3]  
Barre de Saint-Venant A.-J.-C., Mémoire sur la torsion des prismes,” Mémoires Divers des Savants étrangers, Acad, Sci. Paris, 14, pp. 233-560, (1856)
[4]  
Barre de Saint-Venant A.-J.-C., Mémoire sur la exion des prismes, J. de Math. de Liouville, Ser. II, 1, (1856)
[5]  
Galaktionov V.A., Shishkov A.E., Saint-Venant’s principle in blow-up for higher order quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh. Sect. A, 133, 5, pp. 1075-1119, (2003)
[6]  
Galaktionov V.A., Shishkov A.E., Structure of boundary blow-up for higher-order quasilinear parabolic equations, Proc. Roy. Soc. London., Ser. A, Math. Phys. Eng. Sci., 460, pp. 3299-3325, (2004)
[7]  
Galaktionov V.A., Shishkov A.E., Self-similar boundary blow-up for higher-order quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh. Sect. A, 135A, 5, pp. 1195-1227, (2005)
[8]  
Galaktionov V.A., Shishkov A.E., Higher-order quasilinear parabolic equations with singular initial data, Comm. Contemp. Math., 8, 3, pp. 331-354, (2006)
[9]  
Knowles J.K., On Saint-Venant’s principle in the two-dimensional linear theory of elastisity, Arch. Rat. Mech. Anal., 21, pp. 1-22, (1966)
[10]  
Knowles J.K., A Saint-Venant’s principle for a class of second-order elliptic boundary-value problems, Z. angew. Math. Phys., 18, pp. 473-490, (1967)