Unconditional long-time stability of a velocity–vorticity method for the 2D Navier–Stokes equations

被引:0
作者
Timo Heister
Maxim A. Olshanskii
Leo G. Rebholz
机构
[1] Clemson University,Department of Mathematical Sciences
[2] University of Houston,Department of Mathematics
来源
Numerische Mathematik | 2017年 / 135卷
关键词
65M12; 65M60; 76D05;
D O I
暂无
中图分类号
学科分类号
摘要
We prove unconditional long-time stability for a particular velocity–vorticity discretization of the 2D Navier–Stokes equations. The scheme begins with a formulation that uses the Lamb vector to couple the usual velocity–pressure system to the vorticity dynamics equation, and then discretizes with the finite element method in space and implicit–explicit BDF2 in time, with the vorticity equation decoupling at each time step. We prove the method’s vorticity and velocity are both long-time stable in the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} norms, without any timestep restriction. Moreover, our analysis avoids the use of Gronwall-type estimates, which leads us to stability bounds with only polynomial (instead of exponential) dependence on the Reynolds number. Numerical experiments are given that demonstrate the effectiveness of the method.
引用
收藏
页码:143 / 167
页数:24
相关论文
共 46 条
  • [1] Badia S(2010)Long-term stability estimates and existence of a global attractor in a finite element approximation of the Navier–Stokes equations with numerical subgrid scale modeling SIAM J. Numer. Anal. 48 1013-1037
  • [2] Codina R(2010)Residual based VMS subgrid modeling for vortex flows Comput. Methods Appl. Mech. Eng. 199 802-809
  • [3] Gutiérrez-Santacreu JV(2013)Efficient and long-time accurate second-order methods for Stokes–Darcy system SIAM J. Numer. Anal. 51 2563-2584
  • [4] Bensow R(1989)Gevrey class regularity for the solutions of the Navier-Stokes equations J. Funct. Anal. 87 359-369
  • [5] Larson M(2002)Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on Arch. Ration. Mech. Anal. 163 209-258
  • [6] Chen W(1991)Review of incompressible fluid flow computations using the vorticity–velocity formulation Appl. Numer. Math. 7 227-239
  • [7] Gunzburger M(2012)Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations SIAM J. Numer. Anal. 50 126-150
  • [8] Sun D(2008)Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion Math. Comput. 77 1495-1524
  • [9] Wang X(1982)Finite element approximation of the nonstationary Navier–Stokes problem. Part I. Regularity of solutions and second-order error estimates for spatial discretization SIAM J. Numer. Anal. 19 275-311
  • [10] Foias C(1986)Finite element approximation of the nonstationary Navier–Stokes problem. Part II: stability of solutions and error estimates uniform in time SIAM J. Numer. Anal. 23 750-777