共 46 条
- [1] Badia S(2010)Long-term stability estimates and existence of a global attractor in a finite element approximation of the Navier–Stokes equations with numerical subgrid scale modeling SIAM J. Numer. Anal. 48 1013-1037
- [2] Codina R(2010)Residual based VMS subgrid modeling for vortex flows Comput. Methods Appl. Mech. Eng. 199 802-809
- [3] Gutiérrez-Santacreu JV(2013)Efficient and long-time accurate second-order methods for Stokes–Darcy system SIAM J. Numer. Anal. 51 2563-2584
- [4] Bensow R(1989)Gevrey class regularity for the solutions of the Navier-Stokes equations J. Funct. Anal. 87 359-369
- [5] Larson M(2002)Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on Arch. Ration. Mech. Anal. 163 209-258
- [6] Chen W(1991)Review of incompressible fluid flow computations using the vorticity–velocity formulation Appl. Numer. Math. 7 227-239
- [7] Gunzburger M(2012)Long time stability of a classical efficient scheme for two-dimensional Navier–Stokes equations SIAM J. Numer. Anal. 50 126-150
- [8] Sun D(2008)Unconditional stability and convergence of fully discrete schemes for 2D viscous fluids models with mass diffusion Math. Comput. 77 1495-1524
- [9] Wang X(1982)Finite element approximation of the nonstationary Navier–Stokes problem. Part I. Regularity of solutions and second-order error estimates for spatial discretization SIAM J. Numer. Anal. 19 275-311
- [10] Foias C(1986)Finite element approximation of the nonstationary Navier–Stokes problem. Part II: stability of solutions and error estimates uniform in time SIAM J. Numer. Anal. 23 750-777