The CUORE Data Acquisition System

被引:0
作者
S. Copello
S. Di Domizio
A. Branca
A. Caminata
L. Canonica
A. Giachero
E. Guardincerri
L. Marini
M. Pallavicini
M. Vignati
机构
[1] Gran Sasso Science Institute,Dipartimento di Fisica
[2] Università degli Studi di Genova,Dipartimento di Fisica e Astronomia
[3] INFN – Sezione di Genova,Dipartimento di Fisica
[4] Università di Padova,Department of Physics
[5] INFN – Sezione di Padova,undefined
[6] Università di Milano-Bicocca,undefined
[7] INFN – Sezione di Milano Bicocca,undefined
[8] INFN – Laboratori Nazionali del Gran Sasso,undefined
[9] INFN – Sezione di Roma,undefined
[10] University of California,undefined
来源
Journal of Low Temperature Physics | 2020年 / 199卷
关键词
CUORE; CUPID-0; Bolometers; Data acquisition; Double beta decay;
D O I
暂无
中图分类号
学科分类号
摘要
Large mass bolometers, thanks to their good energy resolution and high radiopurity, can be used for rare event searches, such as neutrinoless double beta decay or dark matter direct detection. The bolometric technique has been adopted by the CUORE experiment which is composed by an array of 988 tellurium dioxide bolometers with a total active mass of 741 kg. The experiment started taking data in April 2017 at the Laboratori Nazionali del Gran Sasso (LNGS), Italy, with the scientific goal of searching for neutrinoless double beta decay of 130-Te. Given the increasing number of channels to be acquired, the readout chain became an important aspect of the construction of bolometer arrays. The CUORE data acquisition system here described, called Apollo, was initially developed for CUORE, but its high modularity and flexibility make it possible to use it also in other experiments, regardless of the specific characteristics of the setup such as the number of channels and the bolometer characteristics. Indeed, it has been used not only in CUORE but also in its predecessor CUORE-0, R&D projects and upgrades such as CUPID-0.
引用
收藏
页码:258 / 263
页数:5
相关论文
共 60 条
  • [1] Pirro S(2017)undefined Ann. Rev. Nucl. Part. Sci. 67 161-181
  • [2] Mauskopf P(2014)undefined Adv. High Energy Phys. 2014 951432-798
  • [3] Cremonesi O(2015)undefined Prog. Part. Nucl. Phys. 85 348-170
  • [4] Pavan M(2004)undefined Nucl. Instrum. Meth. A518 775-329
  • [5] Klasen M(2015)undefined Adv. High Energy Phys. 2015 879871-49
  • [6] Pohl M(2016)undefined Eur. Phys. J. C 76 619-986
  • [7] Arnaboldi C(2017)undefined J. Cryst. Growth 475 158-undefined
  • [8] Artusa DR(2017)undefined Phys. Lett. B 767 321-undefined
  • [9] Artusa DR(2017)undefined Eur. Phys. J. C 77 785-undefined
  • [10] Dafinei I(2013)undefined JINST 8 P05021-undefined