QSRR prediction of gas chromatography retention indices of essential oil components

被引:0
作者
Yovani Marrero-Ponce
Stephen J. Barigye
María E. Jorge-Rodríguez
Trang Tran-Thi-Thu
机构
[1] Universidad San Francisco de Quito (USFQ),Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina
[2] Grupo de Medicina Molecular y Traslacional (MeM&T),Grupo de Investigación Ambiental (GIA), Programas Ambientales, Facultad de Ingenierías
[3] Instituto de Simulación Computacional (ISC-USFQ),Department of Chemistry
[4] Fundación Universitaria Tecnológico de Comfenalco (COMFENALCO),Facultad de Medicina
[5] Federal University of Lavras,Department of Pharmacy, Faculty of Chemistry
[6] Universidad de Las Américas,Pharmacy
[7] Central University of Las Villas,undefined
来源
Chemical Papers | 2018年 / 72卷
关键词
Gas chromatography; Retention index; Essential oil; Quantitative structure–retention relationships; Multiple linear regression; Artificial neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
A comprehensive and largest (to the best of our knowledge) database of 791 essential oil components (EOCs) with corresponding gas chromatographic retention properties has been built. With this data set, Quantitative structure–retention relationship (QSRR) models for the prediction of the Kováts retention indices (RIs) on the non-polar DB-5 stationary phase have been built using the DRAGON molecular descriptors and the regression methods: multiple linear regression (MLR) and artificial neural networks (ANN). The obtained models demonstrate good performance, evidenced by the satisfactory statistical parameters for the best MLR (R2 = 96.75% and Qext2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{\text{ext}}^{2}$$\end{document} = 98.0%) and ANN (R2 = 97.18% and Qext2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{\text{ext}}^{2}$$\end{document} = 98.4%) models, respectively. In addition, the built models provide information on the factors that influence the retention of EOCs over the DB-5 stationary phase. Comparisons of the statistical parameters for the QSRR models in the present study with those reported in the literature demonstrate comparable to superior performance for the former. The obtained models constitute valuable tools for the prediction of RIs for new EOCs whose experimental data are undetermined.
引用
收藏
页码:57 / 69
页数:12
相关论文
共 157 条
[11]  
Parham M(2004)Determination of hydroxyl groups in poly(ethylene glycols) J Chromatogr A 1028 287-295
[12]  
Hall LH(1996)Prediction of gas chromatographic retention indices of a diverse set of toxicologically relevant compounds Chromatoghraphia 43 163-176
[13]  
Anker LS(1991)Use of incremental models to estimate the retention indexes of aromatic compounds Anal Chem 63 2021-2024
[14]  
Jurs PC(1991)Prediction of gas chromatographic relative retention times of stimulants and narcotics Anal Chem 63 2025-584
[15]  
Edvards PA(1989)Prediction of gas chromatographic relative retention times of anabolic steroids Chromatographia 27 581-701
[16]  
Azar AP(2007)Estimation and prediction of the retention indices of selected trans-diazenes QSAR Comb Sci 26 694-302
[17]  
Nekoei M(2004)Principles of QSAR models validation: internal and external QSAR Comb Sci 23 295-1546
[18]  
Riahi S(2011)Quantitative structure–retention relationships (QSRR) of some CNS agents studied on DB-5 and DB-17 phases in gas chromatography J Sep Sci 34 1538-459
[19]  
Ganjali MR(2005)Modeling of retention behaviors of most frequent components of essential oils in polar and non-polar stationary phases ATLA-NOTTINGHAM 3 445-311
[20]  
Zare K(1982)QSAR applicability domain estimation by projection of the training set in descriptor space: a review J Chromatogr A 234 303-659