QSRR prediction of gas chromatography retention indices of essential oil components

被引:0
作者
Yovani Marrero-Ponce
Stephen J. Barigye
María E. Jorge-Rodríguez
Trang Tran-Thi-Thu
机构
[1] Universidad San Francisco de Quito (USFQ),Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina
[2] Grupo de Medicina Molecular y Traslacional (MeM&T),Grupo de Investigación Ambiental (GIA), Programas Ambientales, Facultad de Ingenierías
[3] Instituto de Simulación Computacional (ISC-USFQ),Department of Chemistry
[4] Fundación Universitaria Tecnológico de Comfenalco (COMFENALCO),Facultad de Medicina
[5] Federal University of Lavras,Department of Pharmacy, Faculty of Chemistry
[6] Universidad de Las Américas,Pharmacy
[7] Central University of Las Villas,undefined
来源
Chemical Papers | 2018年 / 72卷
关键词
Gas chromatography; Retention index; Essential oil; Quantitative structure–retention relationships; Multiple linear regression; Artificial neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
A comprehensive and largest (to the best of our knowledge) database of 791 essential oil components (EOCs) with corresponding gas chromatographic retention properties has been built. With this data set, Quantitative structure–retention relationship (QSRR) models for the prediction of the Kováts retention indices (RIs) on the non-polar DB-5 stationary phase have been built using the DRAGON molecular descriptors and the regression methods: multiple linear regression (MLR) and artificial neural networks (ANN). The obtained models demonstrate good performance, evidenced by the satisfactory statistical parameters for the best MLR (R2 = 96.75% and Qext2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{\text{ext}}^{2}$$\end{document} = 98.0%) and ANN (R2 = 97.18% and Qext2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{\text{ext}}^{2}$$\end{document} = 98.4%) models, respectively. In addition, the built models provide information on the factors that influence the retention of EOCs over the DB-5 stationary phase. Comparisons of the statistical parameters for the QSRR models in the present study with those reported in the literature demonstrate comparable to superior performance for the former. The obtained models constitute valuable tools for the prediction of RIs for new EOCs whose experimental data are undetermined.
引用
收藏
页码:57 / 69
页数:12
相关论文
共 157 条
[1]  
Acevedo-Martínez J(2006)Quantitative study of the structure–retention index relationship in the imine family J Chromatogr A 1102 238-244
[2]  
Escalona-Arranz JC(2009)Prediction of HPLC retention index using artificial neural networks and IGroup E-state indices J Chem Inform Model 49 788-799
[3]  
Villar-Rojas A(1990)Quantitative structure-retention relationship studies of odor-active aliphatic compounds with oxygen-containing functional groups Anal Chem 62 2676-2684
[4]  
Téllez-Palmero F(2011)A quantitative structure-retention relationship for the prediction of retention indices of the essential oils of J Serb Chem Soc 76 891-902
[5]  
Pérez-Rosés R(2015)Chromatographic retention indices in identification of chemical compounds TrAC Trends Anal Chem 69 98-104
[6]  
González L(2009)Chemical composition, antibacterial and antioxidant activities of leaf essential oil and extracts of Food Chem Toxicol 47 1876-1883
[7]  
Albaugh DR(1994) Miki ex Hu Anal Chim Acta 298 303-317
[8]  
Hall LM(2016)Selection of molecular descriptors used in quantitative structure-gas chromatographic retention relationships: I. Application to alkylbenzenes and naphthalenes Anal Chem 88 7539-7547
[9]  
Hill DW(1993)Prediction models of retention indices for increased confidence in structural elucidation during complex matrix analysis: application to gas chromatography coupled with high-resolution mass spectrometry J Chem Inform Comput Sci 33 211-219
[10]  
Kertesz TM(1979)List operations on chemical graphs. 3. Development of vertex and edge models for fitting retention index data Anal Chem 51 7-12