The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications

被引:0
|
作者
Raluca M. Balan
David Nualart
Lluís Quer-Sardanyons
Guangqu Zheng
机构
[1] University of Ottawa,Department of Mathematics and Statistics, STEM Building
[2] University of Kansas,Department of Mathematics
[3] Universitat Autònoma de Barcelona,Departament de Matemàtiques
[4] The University of Edinburgh,School of Mathematics
[5] James Clerk Maxwell Building,undefined
来源
Stochastics and Partial Differential Equations: Analysis and Computations | 2022年 / 10卷
关键词
Hyperbolic Anderson model; Wiener chaos expansion; Malliavin calculus; Second-order Poincaré inequality; Quantitative central limit theorem; Riesz kernel; Dalang’s condition; 60H15; 60H07; 60G15; 60F05;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we study the hyperbolic Anderson model driven by a space-time colored Gaussian homogeneous noise with spatial dimension d=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=1,2$$\end{document}. Under mild assumptions, we provide Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-estimates of the iterated Malliavin derivative of the solution in terms of the fundamental solution of the wave solution. To achieve this goal, we rely heavily on the Wiener chaos expansion of the solution. Our first application are quantitative central limit theorems for spatial averages of the solution to the hyperbolic Anderson model, where the rates of convergence are described by the total variation distance. These quantitative results have been elusive so far due to the temporal correlation of the noise blocking us from using the Itô calculus. A novel ingredient to overcome this difficulty is the second-order Gaussian Poincaré inequality coupled with the application of the aforementioned Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-estimates of the first two Malliavin derivatives. Besides, we provide the corresponding functional central limit theorems. As a second application, we establish the absolute continuity of the law for the hyperbolic Anderson model. The Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-estimates of Malliavin derivatives are crucial ingredients to verify a local version of Bouleau-Hirsch criterion for absolute continuity. Our approach substantially simplifies the arguments for the one-dimensional case, which has been studied in the recent work by [2].
引用
收藏
页码:757 / 827
页数:70
相关论文
共 50 条
  • [1] The hyperbolic Anderson model: moment estimates of the Malliavin derivatives and applications
    Balan, Raluca M.
    Nualart, David
    Quer-Sardanyons, Lluis
    Zheng, Guangqu
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2022, 10 (03): : 757 - 827
  • [2] Hyperbolic Anderson Model 2: Strichartz Estimates and Stratonovich Setting
    Chen, Xia
    Deya, Aurelien
    Song, Jian
    Tindel, Samy
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (21) : 18575 - 18628
  • [3] MOMENT ESTIMATES FOR SOME RENORMALIZED PARABOLIC ANDERSON MODELS
    Chen, Xia
    Deya, Aurelien
    Ouyang, Cheng
    Tindel, Samy
    ANNALS OF PROBABILITY, 2021, 49 (05): : 2599 - 2636
  • [4] Correlation estimates in the anderson model
    Bellissard, Jean V.
    Hislop, Peter D.
    Stolz, Gueter
    JOURNAL OF STATISTICAL PHYSICS, 2007, 129 (04) : 649 - 662
  • [5] Correlation Estimates in the Anderson Model
    Jean V. Bellissard
    Peter D. Hislop
    Günter Stolz
    Journal of Statistical Physics, 2007, 129 : 649 - 662
  • [6] A local moment approach to the Anderson model
    Logan, DE
    Eastwood, MP
    Tusch, MA
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (12) : 2673 - 2700
  • [7] MAGNITUDE OF LOCAL MOMENT IN ANDERSON MODEL
    SALOMAA, M
    SOLID STATE COMMUNICATIONS, 1977, 23 (05) : 291 - 294
  • [8] Eigenvalue repulsion estimates and some applications for the one-dimensional Anderson model
    Rivkind, Alexander
    Krivolapov, Yevgeny
    Fishman, Shmuel
    Soffer, Avy
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (30)
  • [9] Estimates for derivatives of holomorphic functions in a hyperbolic domain
    Li, Jian-Lin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) : 581 - 591
  • [10] Estimates for the hyperbolic metric of the punctured plane and applications
    A. Yu. Solynin
    M. Vuorinen
    Israel Journal of Mathematics, 2001, 124 : 29 - 60