Performance Improvement of Thin-Film Solar Cells Using 1D Photonic Structures Optimized by Genetic Algorithm

被引:6
作者
Arkani R. [1 ,2 ]
Habibi H. [1 ,3 ]
Ahmadi M. [1 ,4 ]
Ghanaatshoar M. [1 ,4 ]
Pouya R. [5 ]
机构
[1] Laser and Plasma Research Institute, Shahid Beheshti University, Tehran
[2] Department of Physics, University College Cork, Cork
[3] Department of Physics, Faculty of Science, University of Zabol
[4] Solar Cell Research Group, Shahid Beheshti University, Tehran
[5] Engineering Faculty, Islamic Azad University Tehran North Branch, Tehran
来源
Applied Solar Energy (English translation of Geliotekhnika) | 2022年 / 58卷 / 05期
关键词
genetic algorithm; light trapping; photonic crystal; silicon; solar cell;
D O I
10.3103/S0003701X21101084
中图分类号
学科分类号
摘要
Abstract: In this paper, the performance of thin film silicon solar cells is enhanced by employing 1D light-trapping structures. In order to design a structure which efficiently traps light, we have selected MgF2 and Al0.9Ga0.1As materials as the photonic crystal layers due to their negligible extinction coefficient within the silicon sunlight absorbing wavelength range. We have used a genetic algorithm for designing a back-reflector in order to increase the light absorption in the silicon layer. This increases the photocurrent of the solar cell and consequently, leads to an increased efficiency in the device. We have shown that an optimized 1D light-trapping structure can considerably enhance the efficiency of a thin-film silicon solar cell from 7.73% to almost 12%. This confirms the capability of properly designed 1D structures to improve the performance of solar energy conversion devices. © 2022, Allerton Press, Inc.
引用
收藏
页码:601 / 608
页数:7
相关论文
共 40 条
[1]  
Najafabadi H.A., Ahmadi M., Ghanaatshoar M., The influence of radio-frequency sputtered blocking layer on boosting the performance of BaSnO<sub>3</sub>-based dye-sensitized solar cell, Thin Solid Films, 717, (2021)
[2]  
Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D., Solar cell efficiency tables (version 46), Prog. Photovoltaics: Res. Appl., 23, pp. 805-812, (2015)
[3]  
Wurfel P., Wurfel U., Physics of Solar Cells: From Basic Principles to Advanced Concepts, (2009)
[4]  
Garcia J., Bontempo L., Gomez-Malagon L., Kassab L., Efficiency boost in Si-based solar cells using tellurite glass cover layer doped with Eu<sup>3+</sup> and silver nanoparticles, Opt. Mater., 88, pp. 155-160, (2019)
[5]  
Fashina A., Adama K., Oyewole O., Anye V., Asare J., Zebaze Kana M., Soboyejo W., Surface texture and optical properties of crystalline silicon substrates, J. Renewable Sustainable Energy, 7, (2015)
[6]  
Soltanmohammadi M., Karimi V., Alee S., Abrari M., Ahmadi M., Ghanaatshoar M., Cu<sub>2</sub>ZnSnS<sub>4</sub> thin film as a counter electrode in zinc stannate-based dye-sensitized solar cells, Semicond. Sci. Technol., 36, (2021)
[7]  
Mayonado G., Mian S.M., Robbiano V., Cacialli F., Investigation of the Bragg–Snell law in photonic crystals, BFY Proceedings, pp. 60-63, (2015)
[8]  
Gaucher A., Cattoni A., Dupuis C., Chen W., Cariou R., Foldyna M., Lalouat M., Drouard E., Seassal C., Roca i Cabarrocas P., Ultrathin epitaxial silicon solar cells with inverted nanopyramid arrays for efficient light trapping, Nano Lett., 16, pp. 5358-5364, (2016)
[9]  
Bakhadyrkhanov M., Isamov S., Kenzhaev Z., Melebaev D., Zikrillayev K.F., Ikhtiyarova G., Silicon photovoltaic cells with deep p–n-junction, Appl. Sol. Energy, 56, pp. 13-17, (2020)
[10]  
Chen J., Zhou S., Jiang N., Lv S., Qiu J., Multiscale structured glass for advanced light management, J. Mater. Chem. C, 5, pp. 8091-8096, (2017)