Mean curvature flow singularities for mean convex surfaces

被引:0
|
作者
Gerhard Huisken
Carlo Sinestrari
机构
[1] Mathematisches Institut,
[2] Universität Tübingen,undefined
[3] Auf der Morgenstelle 10,undefined
[4] D-72076 Tübingen,undefined
[5] Germany (e-mail: gerhard.huisken@uni-tuebingen.de) ,undefined
[6] Dipartimento di Matematica,undefined
[7] Università di Roma “Tor Vergata”,undefined
[8] Via della Ricerca Scientifica,undefined
[9] I-00133 Roma,undefined
[10] Italy,undefined
[11] (e-mail: sinestra@mat.utovrm.it) ,undefined
来源
Calculus of Variations and Partial Differential Equations | 1999年 / 8卷
关键词
Scalar Curvature; Curvature Flow; Convex Surface; Limit Flow; Negative Part;
D O I
暂无
中图分类号
学科分类号
摘要
We study the evolution by mean curvature of a smooth n–dimensional surface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal M}\subset{\Bbb R}^{n+1}$\end{document}, compact and with positive mean curvature. We first prove an estimate on the negative part of the scalar curvature of the surface. Then we apply this result to study the formation of singularities by rescaling techniques, showing that there exists a sequence of rescaled flows converging to a smooth limit flow of surfaces with nonnegative scalar curvature. This gives a classification of the possible singular behaviour for mean convex surfaces in the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n=2$\end{document}.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 50 条
  • [31] Stability of mean convex cones under mean curvature flow
    J. Clutterbuck
    O. C. Schnürer
    Mathematische Zeitschrift, 2011, 267 : 535 - 547
  • [32] Mean curvature flow from conical singularities
    Chodosh, Otis
    Daniels-Holgate, J. M.
    Schulze, Felix
    INVENTIONES MATHEMATICAE, 2024, 238 (03) : 1041 - 1066
  • [33] Rigidity of generic singularities of mean curvature flow
    Tobias Holck Colding
    Tom Ilmanen
    William P. Minicozzi
    Publications mathématiques de l'IHÉS, 2015, 121 : 363 - 382
  • [34] RIGIDITY OF GENERIC SINGULARITIES OF MEAN CURVATURE FLOW
    Colding, Tobias Holck
    Ilmanen, Tom
    Minicozzi, William P., II
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2015, (121): : 363 - 382
  • [35] LOCAL ENTROPY AND GENERIC MULTIPLICITY ONE SINGULARITIES OF MEAN CURVATURE FLOW OF SURFACES
    Sun, Ao
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2023, 124 (01) : 169 - 198
  • [36] COMPUTING SURFACES OF CONSTANT MEAN-CURVATURE WITH SINGULARITIES
    HEWGILL, DE
    COMPUTING, 1984, 32 (01) : 81 - 92
  • [37] Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains
    Ma, Xi-Nan
    Wang, Pei-He
    Wei, Wei
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 274 (01) : 252 - 277
  • [38] Crystalline mean curvature flow of convex sets
    Bellettini, G
    Caselles, V
    Chambolle, A
    Novaga, M
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2006, 179 (01) : 109 - 152
  • [39] Mean Curvature Flow with Convex Gauss Image
    Yuanlong XIN Key Laboratory of Mathematics for Nonlinear Sciences
    ChineseAnnalsofMathematics, 2008, (02) : 121 - 134
  • [40] Mean curvature flow with convex Gauss image
    Xin, Yuanlong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2008, 29 (02) : 121 - 134