Mean curvature flow singularities for mean convex surfaces

被引:0
|
作者
Gerhard Huisken
Carlo Sinestrari
机构
[1] Mathematisches Institut,
[2] Universität Tübingen,undefined
[3] Auf der Morgenstelle 10,undefined
[4] D-72076 Tübingen,undefined
[5] Germany (e-mail: gerhard.huisken@uni-tuebingen.de) ,undefined
[6] Dipartimento di Matematica,undefined
[7] Università di Roma “Tor Vergata”,undefined
[8] Via della Ricerca Scientifica,undefined
[9] I-00133 Roma,undefined
[10] Italy,undefined
[11] (e-mail: sinestra@mat.utovrm.it) ,undefined
来源
Calculus of Variations and Partial Differential Equations | 1999年 / 8卷
关键词
Scalar Curvature; Curvature Flow; Convex Surface; Limit Flow; Negative Part;
D O I
暂无
中图分类号
学科分类号
摘要
We study the evolution by mean curvature of a smooth n–dimensional surface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\cal M}\subset{\Bbb R}^{n+1}$\end{document}, compact and with positive mean curvature. We first prove an estimate on the negative part of the scalar curvature of the surface. Then we apply this result to study the formation of singularities by rescaling techniques, showing that there exists a sequence of rescaled flows converging to a smooth limit flow of surfaces with nonnegative scalar curvature. This gives a classification of the possible singular behaviour for mean convex surfaces in the case \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $n=2$\end{document}.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 50 条