Finite almost simple groups with prime graphs all of whose connected components are cliques

被引:0
作者
M. R. Zinov’eva
A. S. Kondrat’ev
机构
[1] Ural Branch of the Russian Academy of Sciences,Krasovskii Institute of Mathematics and Mechanics
[2] Ural Federal University,undefined
来源
Proceedings of the Steklov Institute of Mathematics | 2016年 / 295卷
关键词
finite group; almost simple group; prime graph;
D O I
暂无
中图分类号
学科分类号
摘要
We find finite almost simple groups with prime graphs all of whose connected components are cliques, i.e., complete graphs. The proof is based on the following fact, which was obtained by the authors and is of independent interest: the prime graph of a finite simple nonabelian group contains two nonadjacent odd vertices that do not divide the order of the outer automorphism group of this group.
引用
收藏
页码:178 / 188
页数:10
相关论文
共 15 条
  • [1] Vasil’ev A. V.(2005)An adjacency criterion in the prime graph of a finite simple group Algebra Logic 44 381-406
  • [2] Vdovin E. P.(2011)Cocliques of maximal size in the prime graph of a finite simple group Algebra Logic 50 291-322
  • [3] Vasil’ev A. V.(2012)On finite groups with disconnected prime graph Tr. Inst. Mat. Mekh. 18 99-105
  • [4] Vdovin E. P.(1990)Prime graph components of finite simple groups Math. USSR-Sb. 67 235-247
  • [5] Zinov’eva M. R.(2000)Recognition of alternating groups of prime degree from their element orders Sib. Math. J. 41 294-302
  • [6] Mazurov V. D.(1870)Note sur la résolution en nombres entiers et positifs de l’équation xm = yn + 1 Nouv. Ann. Math. (2) 9 469-471
  • [7] Kondrat’ev A. S.(1999)Prime graph components of finite almost simple groups Rend. Sem. Mat. Univ. Padova 102 1-22
  • [8] Kondrat’ev A. S.(2004)Groups with complete prime graph connected components J. Group Theory 7 373-384
  • [9] Mazurov V. D.(1981)Prime graph components of finite groups J. Algebra 69 487-513
  • [10] Gerono G. C.(1892)Zur Theorie der Potenzreste Monatsh. Math. Phys. 3 265-284