Class and rank of differential modules

被引:0
|
作者
Luchezar L. Avramov
Ragnar-Olaf Buchweitz
Srikanth Iyengar
机构
[1] University of Nebraska,Department of Mathematics
[2] University of Toronto at Scarborough,Department of Computer and Mathematical Sciences
来源
Inventiones mathematicae | 2007年 / 169卷
关键词
Exact Sequence; Spectral Sequence; Local Ring; Direct Summand; Polynomial Ring;
D O I
暂无
中图分类号
学科分类号
摘要
A differential module is a module equipped with a square-zero endomorphism. This structure underpins complexes of modules over rings, as well as differential graded modules over graded rings. We establish lower bounds on the class – a substitute for the length of a free complex – and on the rank of a differential module in terms of invariants of its homology. These results specialize to basic theorems in commutative algebra and algebraic topology. One instance is a common generalization of the equicharacteristic case of the New Intersection Theorem of Hochster, Peskine, P. Roberts, and Szpiro, concerning complexes over commutative noetherian rings, and of a theorem of G. Carlsson on differential graded modules over graded polynomial rings.
引用
收藏
页码:1 / 35
页数:34
相关论文
共 50 条
  • [21] Generalizations of ⊕ -supplemented modules
    B. N. Türkmen
    A. Pancar
    Ukrainian Mathematical Journal, 2013, 65 : 612 - 622
  • [22] On locally finite modules
    Mekei A.
    Wisbauer R.
    Journal of Mathematical Sciences, 2005, 131 (6) : 6083 - 6097
  • [23] A Generalization of Lifting Modules
    T. Amouzegar Kalati
    Ukrainian Mathematical Journal, 2015, 66 : 1654 - 1664
  • [24] Chains of semidualizing modules
    Amanzadeh, Ensiyeh
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (07)
  • [25] Modules with annihilation property
    Mohammadi, Rasul
    Moussavi, Ahmad
    Zahiri, Masoome
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (07)
  • [26] Generalizations of ⊕-supplemented modules
    Turkmen, B. N.
    Pancar, A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2013, 65 (04) : 612 - 622
  • [27] On extensions of rational modules
    Miodrag Cristian Iovanov
    Israel Journal of Mathematics, 2014, 199 : 585 - 622
  • [28] On strongly ⊕-supplemented modules
    C. Nebiyev
    A. Pancar
    Ukrainian Mathematical Journal, 2011, 63 : 768 - 775
  • [29] Bezout modules and rings
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2009, 163 (5) : 596 - 597
  • [30] Rings over which all modules are I0-modules. II
    Abyzov A.N.
    Tuganbaev A.A.
    Journal of Mathematical Sciences, 2009, 162 (5) : 587 - 593