Markovian Solutions of Inviscid Burgers Equation

被引:1
作者
Marie-Line Chabanol
Jean Duchon
机构
[1] UMR 5582 CNRS-Université Joseph Fourier,Institut Fourier (Grenoble)
来源
Journal of Statistical Physics | 2004年 / 114卷
关键词
Burgers; inviscid; turbulence; Markov;
D O I
暂无
中图分类号
学科分类号
摘要
For solutions of (inviscid, forceless, one dimensional) Burgers equation with random initial condition, it is heuristically shown that a stationary Feller–Markov property (with respect to the space variable) at some time is conserved at later times, and an evolution equation is derived for the infinitesimal generator. Previously known explicit solutions such as Frachebourg–Martin's (white noise initial velocity) and Carraro–Duchon's Lévy process intrinsic-statistical solutions (including Brownian initial velocity) are recovered as special cases.
引用
收藏
页码:525 / 534
页数:9
相关论文
共 50 条
[41]   On the Solution of Fractional Burgers' Equation and Its Optimal Control Problem [J].
Svetlin G.Georgiev ;
Fatemeh Mohammadizadeh ;
Hojjat A.Tehrani ;
M.H.Noori Skandari .
Analysis in Theory and Applications, 2019, (04) :405-420
[42]   Burgers equation with a passive scalar: Dissipation anomaly and Colombeau calculus [J].
Ohkitani, Koji ;
Dowker, Mark .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (03)
[43]   Numerical solution of Burgers’ equation by B-spline collocation [J].
Yousefi M. ;
Rashidinia J. ;
Yousefi M. ;
Moudi M. .
Afrika Matematika, 2016, 27 (7-8) :1287-1293
[44]   Extended self-similarity works for the Burgers equation and why [J].
Chakraborty, Sagar ;
Frisch, Uriel ;
Ray, Samriddhi Sankar .
JOURNAL OF FLUID MECHANICS, 2010, 649 :275-285
[45]   Intermittency in fractal Fourier hydrodynamics: Lessons from the Burgers equation [J].
Buzzicotti, Michele ;
Biferale, Luca ;
Frisch, Uriel ;
Ray, Samriddhi Sankar .
PHYSICAL REVIEW E, 2016, 93 (03)
[46]   Noise Effect on the 2D Stochastic Burgers Equation [J].
Dong, Zhao ;
Wu, Jiang Lun ;
Zhou, Guo Li .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (09) :2065-2090
[47]   Statistical analysis and simulation of random shocks in stochastic Burgers equation [J].
Cho, Heyrim ;
Venturi, Daniele ;
Karniadakis, George E. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 470 (2171)
[48]   Poles, shocks, and tygers: The time-reversible Burgers equation [J].
Das, Arunava ;
Dutta, Pinaki ;
Shukla, Vishwanath .
PHYSICAL REVIEW E, 2024, 109 (06)
[49]   STOCHASTIC 1D BURGERS EQUATION AS A MODEL FORHYDRODYNAMICAL TURBULENCE [J].
Kuksin, Sergei .
MOSCOW MATHEMATICAL JOURNAL, 2024, 24 (04) :603-640
[50]   Lie algebra of coupled higher-dimensional forced Burgers' equation [J].
Halder, Amlan K. ;
Charalambous, Kyriakos ;
Sinuvasan, R. ;
Leach, P. G. L. .
AFRIKA MATEMATIKA, 2021, 32 (7-8) :1657-1667