Markovian Solutions of Inviscid Burgers Equation

被引:1
作者
Marie-Line Chabanol
Jean Duchon
机构
[1] UMR 5582 CNRS-Université Joseph Fourier,Institut Fourier (Grenoble)
来源
Journal of Statistical Physics | 2004年 / 114卷
关键词
Burgers; inviscid; turbulence; Markov;
D O I
暂无
中图分类号
学科分类号
摘要
For solutions of (inviscid, forceless, one dimensional) Burgers equation with random initial condition, it is heuristically shown that a stationary Feller–Markov property (with respect to the space variable) at some time is conserved at later times, and an evolution equation is derived for the infinitesimal generator. Previously known explicit solutions such as Frachebourg–Martin's (white noise initial velocity) and Carraro–Duchon's Lévy process intrinsic-statistical solutions (including Brownian initial velocity) are recovered as special cases.
引用
收藏
页码:525 / 534
页数:9
相关论文
共 50 条
[31]   Shallow water equations: viscous solutions and inviscid limit [J].
Chen, Gui-Qiang ;
Perepelitsa, Mikhail .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (06) :1067-1084
[32]   Shallow water equations: viscous solutions and inviscid limit [J].
Gui-Qiang Chen ;
Mikhail Perepelitsa .
Zeitschrift für angewandte Mathematik und Physik, 2012, 63 :1067-1084
[33]   Contemporary review of techniques for the solution of nonlinear Burgers equation [J].
Dhawan, S. ;
Kapoor, S. ;
Kumar, S. ;
Rawat, S. .
JOURNAL OF COMPUTATIONAL SCIENCE, 2012, 3 (05) :405-419
[34]   Statistical Properties of the Burgers Equation with Brownian Initial Velocity [J].
Valageas, Patrick .
JOURNAL OF STATISTICAL PHYSICS, 2009, 134 (03) :589-640
[35]   Statistical Properties of the Burgers Equation with Brownian Initial Velocity [J].
Patrick Valageas .
Journal of Statistical Physics, 2009, 134 :589-640
[36]   Finite-time blowup for the inviscid vortex stretching equation [J].
Miller, Evan .
NONLINEARITY, 2023, 36 (08) :4086-4109
[37]   Ergodicity of 3D Stochastic Burgers Equation [J].
Dong, Zhao ;
Wu, Jiang Lun ;
Zhou, Guo Li .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (02) :498-510
[38]   Numerical Solution of the Burgers’ Equation Using Chelyshkov Polynomials [J].
Arar N. ;
Deghdough B. ;
Dekkiche S. ;
Torch Z. ;
Nagy A.M. .
International Journal of Applied and Computational Mathematics, 2024, 10 (1)
[39]   A STOCHASTIC BURGERS EQUATION FROM A CLASS OF MICROSCOPIC INTERACTIONS [J].
Goncalves, Patricia ;
Jara, Milton ;
Sethuraman, Sunder .
ANNALS OF PROBABILITY, 2015, 43 (01) :286-338
[40]   Spontaneously stochastic solutions in one-dimensional inviscid systems [J].
Mailybaev, Alexei A. .
NONLINEARITY, 2016, 29 (08) :2238-2252